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Motivation

’fair’ division of a certain resource (cake), between n people
cake represented by interval 〈0, 1〉
players: different opinions about the values of different parts of
the cake
these valuations are private information of players
various notions of fairness
constructive approach is sought
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Valuation of player i for interval I = 〈p, q〉 is
denoted by Ui(I) = Ui(p, q)

Assumptions: the valuation is
(i) nonnegative, i.e. Ui(I) ≥ 0 for each interval I ⊆ 〈0, 1〉,
(ii) additive, i.e. Ui(I ∪ J) = Ui(I) + Ui(J) for any two disjoint

intervals I, J ,
(iii) divisible, i.e. for each I = 〈p, q〉 ⊆ 〈0, 1〉 and each λ ∈ 〈0, 1〉

there exists r ∈ 〈p, q〉 such that Ui(p, r) = λ Ui(p, q), and
(iv) normalized, i.e. Ui(0, 1) = 1.

Valuation can be represented by a nonnegative integrable utility

function ui : 〈0, 1〉 → R such that
1∫
0

ui(x)dx = 1.

Ui(p, q) =

q∫
p

ui(x)dx for p ≤ q
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Notions of fairness

Definition
A simple cake division is a pair dc = (d, ϕ), where d is an (n− 1)
tuple (x1, x2..., xn−1) of cutpoints, 0 < x1 < x2 < ... < xn−1 < 1,
and ϕ : N → N is a permutation of N .

Definition
Let dc = (d, ϕ) be a simple cake division for the set of players N .
Then dc is called
a) simple fair, if Uϕ(j)(xj−1, xj) ≥ 1/n for each j ∈ N
b) exact, if Uϕ(j)(xk−1, xk) = 1/n for each j, k ∈ N
c) envy-free, if Uϕ(j)(xj−1, xj) ≥ Uϕ(j)(xk−1, xk) for each j, k ∈ N
d) equitable, if Uϕ(j)(xj−1, xj) = Uϕ(k)(xk−1, xk) for each j, k ∈ N
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Relations between notions of fairness

each envy-free cake division is simple fair
for n = 2, each simple fair cake division is envy-free, but this is
not necessarily true for more than two players
for n > 2 not every simple fair division is equitable (example:
famous divide-and-choose procedure)
if in an equitable division the common value of the pieces is at
least 1/n, fairness is ensured
a fair equitable division may be neither envy-free nor exact
for n = 2, equitability with values 1/2 is equivalent to
exactness.
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Brief history of cake cutting

Talmud, the bankruptcy problem: one of the oldest recorded
fair-division problems (Auman, Maschler 1985)
the famous algorithm ’I cut, you choose’ goes back the
Hebrew Bible (Brams, Taylor 1999)
a rigorous mathematical theory of fair division started
(Steinhaus, Banach and Knaster 1948)
existence results:

simple fair (Steinhaus 1948)
envy-free (Stronquist 1980)

moving-knife algorithms (Gardner 1978)

Recommended reading: J. Robertson, W. Webb, Cake Cutting
Algorithms, A.K. Peters, 1998.
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Simple equitable cake divisions for two players

e ∈ (0, 1) is an equitable point if

U1(0, e) = U2(e, 1) or, equivalently, U1(e, 1) = U2(0, e)

Set of all equitable points: E

Theorem
For two players, the set E is always nonempty and connected.
Moreover, U1(0, e) and U2(e, 1) are constant on E and either
U1(0, e) = 1/2 or exactly one of the two simple divisions generated
by e is simple fair for each e ∈ E .
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A finite algorithm uses a finite number of requests

’Cut the given cake piece into two pieces whose values are in
the given ratio!’ (cutting query)
’What is your value of the given cake piece?’ (evaluation
query)

No need to know the complete value functions of players.

Moving-knife algorithms are not finite.

Impossibility results: no finite algorithm can produce
exact division for two players (Robertson and Webb 1997)
envy-free division for three players where everybody gets a
single piece (Stromquist 2008)
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ε-equitability

Definition
Let dc = (d, ϕ) be a simple cake division and ε > 0 a real number.
Then dc is called ε-equitable if

|Uϕ(j)(xj−1, xj)− Uϕ(k)(xk−1, xk)| ≤ ε for each j, k ∈ N .
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ε-exact algorithms

Robertson, Webb 1997
Player 1 cuts the cake into pieces smaller than ε/2
Then player 2 can reduce the pieces to be smaller than ε/2
A near exact division produced by a suitable assignment of the
obtained pieces to players.
Disadvantage: many small pieces, scattered over the whole cake.

Simmons, Su 2003: Consensus halving

Theorem (Borsuk-Ulam)

For any continuous function f : Sn → Rn there exist antipodal
points x,−x ∈ Sn such that f(x) = f(−x).

Advantage: n cut points for n players
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Algorithm bisect

begin a1 :=half1(0, 1); b1 :=half2(0, 1);
if a1 = b1 then cut the cake in a1 and halt;
if a1 > b1 then rename the players;
p12 :=half1(0, 1); q12 := 1; p22 := 0; q22 :=half2(0, 1); j := 1;
repeat j := j + 1; aj := half1(p1j , q

1
j ); bj := half2(p2j , q

2
j );

if aj 6= bj then
begin

if aj < bj then (comment: successful iteration)
begin right(p1j , q

1
j , aj , p

1
j+1, q

1
j+1); left(p

2
j , q
2
j , bj , p

2
j+1, q

2
j+1) end;

if aj > bj then (comment: unsuccessful iteration)
begin left(p1j , q

1
j , aj , p

1
j+1, q

1
j+1); right(p

2
j , q
2
j , bj , p

2
j+1, q

2
j+1) end;

end
until aj = bj or 1/2j−1 < ε;
if aj 6= bj then cut the cake in c :=

(
max

{
p1j , p

2
j

}
+min

{
q1j , q2j

})
/2

else cut the cake in aj ;
end
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Example 1

u1(x) =


2 if x ∈ 〈0, 1/4〉
0 if x ∈ (1/4, 3/4〉
2 if x ∈ (3/4, 1〉

u2(x) =


3/2 if x ∈ 〈0, 1/3〉
0 if x ∈ (1/3, 2/3〉
3/2 if x ∈ (2/3, 1〉

Let a1 = 1/4 b1 = 1/3

E = 〈1/3, 2/3〉 with the common fair values equal to 1/2.

lim
j→∞

aj = 3/4 /∈ E lim
j→∞

bj = 1/3 ∈ E
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Example 2

u1(x) =


2 if x ∈ 〈0, 1/4)
3 if x ∈ 〈1/4, 1/3)
0 if x ∈ 〈1/3, 2/3)
3/4 if x ∈ 〈2/3, 1〉

u2(x) =


1/2 if x ∈ 〈0, 1/2)
0 if x ∈ 〈1/2, 3/4)
2 if x ∈ 〈3/4, 7/8)
4 if x ∈ 〈7/8, 1〉

E = 〈1/2, 2/3〉 with the common fair values equal to 3/4.

Second iteration successful: A ≥ 1/3 and B ≤ 3/4
All next iterations unsuccessful, since aj > 2/3 and bj < 1/2.
Both players: pieces of value 3/4.
limj→∞ aj = 2/3 limj→∞ bj = 1/2

Second iteration unsuccessful:
aj ∈ (1/4, 1/3), bj ∈ (3/4, 7/8) for j > 2.
All following iterations sucessful,
limj→∞ aj = 1/3 limj→∞ bj = 3/4
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Properties of the algorithm

Lemma

In each iteration j ≥ 2:

(a)
〈
pi

j , q
i
j

〉
⊂

〈
pi

j−1, q
i
j−1

〉
for both players i = 1, 2

(b) Ui(pi
j , q

i
j) = 1/2

j−1 for both players i = 1, 2

(c) p1j = a` and q2j = b` where `: the last successful iteration before j

(d) U1(0, aj) = U2(bj , 1)

(e) U1(0, p1j ) = U2(q2j , 1), hence U1(0, A) = U2(B, 1)

(f)
〈
p1j , q

1
j

〉
∩

〈
p2j , q

2
j

〉
6= ∅

(g) |U1(0, c)− U2(c, 1)| ≤ 1/2j−1 for each c ∈
〈
p1j , q

1
j

〉
∩

〈
p2j , q

2
j

〉
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Proof of the Lemma

(a) Directly from the definition of algorithm bisect.
(b) Directly from the definition of algorithm bisect.
(c) Directly from the definition of algorithm bisect.
(d) Induction on j. Assume, that U1(0, ak) = U2(bk, 1) for every

k < j. Then
U1(0, aj) = U1(0, p1j )+U1(p1j , aj) = U1(0, a`)+U1(p1j , q

1
j )/2 =

U2(b`, 1) + U2(p2j , q
2
j )/2 = U2(bj , q

2
j ) + U2(q2j , 1) = U2(bj , 1),

hence the desired equality follows.
(e) Follows from (c) and (d).
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Proof of the Lemma – continued

(f) In the first iteration we have
〈
pk
1, q

k
1

〉
= 〈0, 1〉 for both k; in

the second one
〈
p12, q

1
2

〉
= 〈a1, 1〉 and

〈
p22, q

2
2

〉
= 〈0, b1〉 and

since after eventuall renaming of player we have aj < bj , the
claim holds for j = 1, 2. Now let us suppose that〈
p1j , q

1
j

〉
∩

〈
p2j , q

2
j

〉
6= ∅ for some j ≥ 2. Those two intervals

intersect if and only if p1j ≤ q2j and simultaneously p2j ≤ q1j .
The algorithm proceeds to the next iteration only if aj 6= bj

and we distinguish now the successful and unsuccessful
iteration.
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Proof of the Lemma – continued

(i) If the iteration is successful, which happens if aj < bj , the new

working intervals are
〈
aj , q

1
j

〉
and

〈
p2j , bj

〉
. Now the

inequality p2j ≤ q1j folows from the induction hypothesis and
aj < bj from the definition of the successful iteration.

(ii) In an unsuccessful iteration is the new working intervals are〈
p1j , aj

〉
and

〈
bj , q

2
j

〉
. Again, the inequality p1j ≤ q2j folows

from the induction hypothesis and bj < aj holds because the
iteration was unsuccessful.

In both cases, the intersection of working intervals in nonempty also
in the following iteration and by induction the claim is proved.
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Proof of the Lemma – continued

(g) Additivity of value functions and (b) imply that
0 ≤ U1(p1j , c) ≤ 1/2j−1 and 0 ≤ U2(c, q2j ) ≤ 1/2j−1. Then,
using (e)

|U1(0, c)− U2(c, 1)|
= |U1(0, p1j ) + U1(p

1
j , c)− (U2(c, q2j ) + U2(q

2
j , 1))|

= |U1(p1j , c)− U2(c, q
2
j )| ≤ 1/2j−1

and the claim is proved.
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Correctness of the algorithm

Theorem
For ε > 0, algorithm bisect outputs a fair ε-equitable division.

Proof.
If the procedure ends because aj = bj , the obtained simple division
is equitable. If not, claim (f) of Lemma 1 ensures that
ε-equitability for the given ε > 0 is achieved. Fairness is ensured by
choosing the appropriate players’ order: (1, 2) if the condition in
line 3 of the algorithm was not fulfilled, otherwise (2, 1).
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Properties of the algorithm for positive utility
functions

Theorem
If the utility functions of both players are everywhere positive then
there is a unique equitable point e, the execution of the algorithm
is unique and in each iteration j ≥ 2 we have:
(a) min{aj , bj} ≤ e ≤ max{aj , bj}

(b) e ∈
〈
p1j , q

1
j

〉
∩

〈
p2j , q

2
j

〉
(c) |U1(0, e)−U1(0, aj)| < 1/2j and |U2(e, 1)−U2(bj , 1)| < 1/2j

(d) limj→∞ aj = limj→∞ bj = e
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Proof of the Theorem

(a) We distinguish three cases:
aj = e. Then, using Lemma 1(d), we have
U2(bj , 1) = U1(0, aj) = U1(0, e) = U2(e, 1). As function
U2(x, 1) is strictly decreasing, this implies bj = e.
aj < e. Since U1(0, x) is strictly increasing and U2(x, 1) is
strictly decreasing in x, relations
U2(e, 1) = U1(0, e) > U1(0, aj) = U2(bj , 1) imply e < bj .
Similarly, aj > e implies e > bj .

Summarizing: there are exactly three possibilities: aj = e = bj

or aj < e < bj or bj > e > aj and the claim is proved.
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Proof of the Theorem

(b) Induction on j. Suppose that e ∈
〈
p1k, q

1
k

〉
∩

〈
p2k, q

2
k

〉
for each

k < j. According to (a), there are three different cases.
aj−1 = e = bj−1. Algorithm bisect terminates and there is
nothing to be proved for j.
aj−1 < e < bj−1. According to the definition of the algorithm,
iteration j − 1 is successful, p1j = aj−1 < e < q1j−1 = q1j and
p2j = p2j−1 < e < bj−1 = q2j , the claim is proved.
aj−1 > e > bj−1. In this case iteration j − 1 is unsuccessful,
p1j = p1j−1 < e < aj−1 = q1j and p2j = bj−1 < e < q2j−1 = q2j ,
so the claim follows.

Herl’any, Apríl 2010 K. Cechlárová



Proof of the Theorem

(c) From the definition of bisection points and Lemma 1(b) we
have for each j:

U1(p
1
j , aj) = U1(aj , q

1
j ) = 1/2

j and U2(p
2
j , bj) = U2(bj , q

2
j ) = 1/2

j .

We again distinguish three cases:
aj = bj = e then the assertion is trivial.
aj > e > bj . Then, using (b),
|U1(0, e)− U1(0, aj)| = U1(e, aj) < U1(p1j , aj) = 1/2j .
Similarly,
|U2(e, 1)− U2(bj , 1)| = U2(bj , e) < U2(bj , q

2
j ) = 1/2

j .
Case aj < e < bj is proved similarly.

(d) Follows from (c).
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Open questions

Algorithm for divisions in the ratio approximately r : s

Determine the maximum number v such that there exists a
simple equitable division assigning each player a piece with
value at least v?
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