

Európska únia Európsky fond regionálneho rozvoja

Podporujeme výskumné aktivity na Slovensku/ Projekt je spolufinancovaný zo zdrojov EÚ

Similarities and Cardinalities of Interval-valued Fuzzy Sets

Pavol Kráľ

Matej Bel University, Banská Bystrica

16. 4. 2010

Preliminaries

The lattice \mathcal{L}^{I}

We define $\mathcal{L}^{I} = (L^{I}, \leq_{L^{I}})$ by $L^{I} = \{[x_{1}, x_{2}] \mid (x_{1}, x_{2}) \in [0, 1]^{2} \text{ and } x_{1} \leq x_{2}\},$ $[x_{1}, x_{2}] \leq_{L^{I}} [y_{1}, y_{2}] \iff (x_{1} \leq y_{1} \text{ and } x_{2} \leq y_{2}),$ for all $[x_{1}, x_{2}], [y_{1}, y_{2}] \in L^{I}.$

Interval-valued fuzzy set

An interval-valued fuzzy set on U is a mapping $A: U
ightarrow L^I.$

For further usage...

$$ar{L}^I = \{ [x_1, x_2] \mid (x_1, x_2) \in \mathbb{R}^2 ext{ and } x_1 \leq x_2 \}, \ ar{L}^I_+ = \{ [x_1, x_2] \mid (x_1, x_2) \in [0, +\infty[^2 ext{ and } x_1 \leq x_2 \}, \ D = \{ [x_1, x_1] \mid x_1 \in [0, 1] \}.$$

Similarity measure of fuzzy sets

A real function $S : (\mathcal{F}^F(U))^2 \to [0, 1]$ is called a similarity measure of fuzzy sets if S satisfies the following properties: for all A, B, C in $\mathcal{F}^F(U)$,

- **(**S(A, A) = 1,
- \mathfrak{G} if $A \in \mathcal{P}(U)$, then $S(A, \operatorname{co} A) = 0$,
- \mathfrak{G} if $A \subseteq B \subseteq C$, then $S(A, C) \leq \inf(S(A, B), S(B, C))$.

Note that S4 is equivalent to: for all A, B, C and D in $\mathcal{F}(U)$, if $A \subseteq B \subseteq C \subseteq D$, then $S(A, D) \subseteq S(B, C)$.

De Baets et al.

The family of similarity measures:

$$S(A,B)=rac{alpha_{A,B}+b\omega_{A,B}+c\delta_{A,B}+d
u_{A,B}}{a'lpha_{A,B}+b'\omega_{A,B}+c'\delta_{A,B}+d'
u_{A,B}},$$

where $\alpha_{A,B} = \min\{\operatorname{card}(A \setminus B), \operatorname{card}(B \setminus A)\},\ \omega_{A,B} = \max\{\operatorname{card}(A \setminus B), \operatorname{card}(B \setminus A)\},\ \delta_{A,B} = \operatorname{card}(A \cap B),\ \nu_{A,B} = \operatorname{card}(\operatorname{co}(A \cup B)),\ \text{with }\ a, a', b, b', c, c', d, d' \ \text{in } \{0, 1\}.$

T-norms and related operations on \mathcal{L}^{I}

- A t-norm on \mathcal{L}^I is a commutative, associative mapping $\mathcal{T}: (L^I)^2 \to L^I$ which is increasing in both arguments and which satisfies $\mathcal{T}(\mathbf{1}_{\mathcal{L}^I}, x) = x$, for all $x \in L^I$.
- A t-conorm on \mathcal{L}^I is a commutative, associative mapping $\mathcal{S}: (L^I)^2 \to L^I$ which is increasing in both arguments and which satisfies $\mathcal{S}(\mathbf{0}_{\mathcal{L}^I}, x) = x$, for all $x \in L^I$.
- A negation on \mathcal{L}^{I} is a decreasing mapping $\mathcal{N}: L^{I} \to L^{I}$ which satisfies $\mathcal{N}(0_{\mathcal{L}^{I}}) = 1_{\mathcal{L}^{I}}$ and $\mathcal{N}(1_{\mathcal{L}^{I}}) = 0_{\mathcal{L}^{I}}$. If $\mathcal{N}(\mathcal{N}(x)) = x$, for all $x \in L^{I}$, then \mathcal{N} is called involutive.

Dual t-conorm

Let \mathcal{T} be a t-norm and \mathcal{N} be an involutive negation on \mathcal{L}^{I} . The mapping $\mathcal{T}_{\mathcal{N}}^{*}: (L^{I})^{2} \to L^{I}$ defined by $\mathcal{T}_{\mathcal{N}}^{*}(x, y) = \mathcal{N}(\mathcal{T}(\mathcal{N}(x), \mathcal{N}(y)))$, for all x, y in L^{I} , is a t-conorm on \mathcal{L}^{I} which is called the dual t-conorm of \mathcal{T} with respect to the negation \mathcal{N} .

Intersection, union and complement

The generalized intersection $\cap_{\mathcal{T}}$, union $\cup_{\mathcal{S}}$ and complement $\operatorname{co}_{\mathcal{N}}$ of interval-valued fuzzy sets are defined as follows: for all $A, B \in \mathcal{F}_{\mathcal{L}^{I}}(U)$ and for all $u \in U$,

$$A \cap_{\mathcal{T}} B(u) = \mathcal{T}(A(u), B(u)),$$

 $A \cup_{\mathcal{S}} B(u) = \mathcal{S}(A(u), B(u)),$
 $\operatorname{co}_{\mathcal{N}} A(u) = \mathcal{N}(A(u)).$

Addition and multiplication operator

An addition operator on \bar{L}^I is a mapping $\oplus : (\bar{L}^I)^2 \to \bar{L}^I$ which satisfies the following properties:

- is commutative,
- ⊕ is associative,

 \bigcirc \oplus is increasing in both arguments,

$${old 0} \,\, {\mathfrak O}_{{\mathcal L}^I} \oplus a = a$$
, for all $\, a \in ar L^I$,

 $\ \, {\bf 0} \ \, [\alpha,\alpha]\oplus[\beta,\beta]=[\alpha+\beta,\alpha+\beta], \ \, {\rm for \ all} \ \, \alpha,\beta \ \, {\rm in} \ \, [0,+\infty[,$

A multiplication operator on \bar{L}^I_+ is a mapping $\otimes : (\bar{L}^I_+)^2 \to \bar{L}^I$ which satisfies the following properties:

- ⊗ is commutative,
- ❷ ⊗ is associative,
- \odot \otimes is increasing in both arguments,

④
$$\ 1_{\mathcal{L}^{I}}\otimes a=a$$
, for all $a\in ar{L}_{+}^{I}$

 $\label{eq:alpha} \bullet \ [\alpha,\alpha] \otimes [\beta,\beta] = [\alpha\beta,\alpha\beta], \mbox{ for all } \alpha,\beta \mbox{ in } [0,+\infty[.$

Sometimes we will assume that \oplus and \otimes satisfy the following conditions:

$${old O}$$
 $[lpha, lpha] \oplus b = [lpha + b_1, lpha + b_2]$, for all $lpha \in \mathbb{R}$ and $b \in ar{L}^I$,

$${old O}$$
 $[lpha, lpha] \otimes b = [lpha b_1, lpha b_2]$, for all $lpha \in [0, +\infty[$ and $b \in ar{L}^I_+.$

Division operator

Using any multiplication operator \otimes , a division operator \oslash can be defined as follows, for all x', y' in $\bar{L}^I_{+,0}$,

$$1_{\mathcal{L}^I}\oslash x^{\,\prime}=\Big[rac{1}{x_2^{\,\prime}},rac{1}{x_1^{\,\prime}}\Big],$$

and

$$x' \oslash y' = 1_{\mathcal{L}^{I}} \oslash ((1_{\mathcal{L}^{I}} \oslash x') \otimes y'),$$

and similarly for the subtraction.

Scalar cardinalities of interval-valued fuzzy sets

Let \oplus be an addition operator on \overline{L}^I . A mapping $\operatorname{card}_I : \mathcal{F}_{\mathcal{L}^I}^F(U) \to \overline{L}_+^I$ is called a scalar cardinality of interval-valued fuzzy sets if the following conditions hold:

$${f D}$$
 coincidence: for all $u\in U,$

 $\operatorname{card}_{I}(1_{\mathcal{L}^{I}}/u) = 1_{\mathcal{L}^{I}};$

2 monotonicity: for all $a, b \in L^I$ and $u, v \in U$,

$$a \leq_{L^{I}} b \implies \operatorname{card}_{I}(a/u) \leq_{L^{I}} \operatorname{card}_{I}(b/v);$$

additivity: for all A, B ∈ F^F_{L^I}(U),
 supp(A) ∩ supp(B) = Ø
 ⇒ card_I(A ∪ B) = card_I(A) ⊕ card_I(B).

Representation theorem

A mapping card_I : $\mathcal{F}_{\mathcal{L}^{I}}^{F}(U) \to \overline{L}_{+}^{I}$ is a scalar cardinality iff there exists a mapping $f_{I} : L^{I} \to L^{I}$ (called scalar cardinality pattern) fulfilling the following conditions:

2
$$f_I(a) \leq_{L^I} f_I(b)$$
 whenever $a \leq_{L^I} b$,

such that

$$\operatorname{card}_I(A) = igoplus_{u \in \operatorname{supp}(A)} f_I(A(u)),$$

for each $A \in \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$.

Similarity measure of interval-valued fuzzy sets

A similarity measure of interval-valued fuzzy sets is a mapping $S: (\mathcal{F}^F_{\mathcal{L}^I}(U))^2 \to [0, 1]$ measuring the degree of similarity between interval-valued fuzzy sets if it satisfies the following set of axioms for all A, B, C in $\mathcal{F}^F_{\mathcal{L}^I}(U)$:

$$\bullet \ \mathcal{S}(A,B) = 1 \ {\sf if} \ ({\sf or} \ {\sf alternatively} \ {\sf iff}) \ A = B,$$

 $\begin{array}{ll} \textcircled{0} & S(A,B) \geq_{L^{I}} S(A,C) \text{ if } |A(u)_{1} - B(u)_{1}| \leq |A(u)_{1} - C(u)_{1}| \\ & \text{ and } |B(u)_{2} - A(u)_{2}| \leq |C(u)_{2} - A(u)_{2}| \text{ for all } u \in U. \end{array}$

For our purposes we introduce an extended modal operator D_{α} for each $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_n) \in [0, 1]^n$ as the mapping $D_{\alpha} : \mathcal{F}_{\mathcal{L}^I}^F(U) \to \mathcal{F}_{[0,1]}^F(U)$ defined by, for all $A \in \mathcal{F}_{\mathcal{L}^I}^F(U)$, $D_{\alpha}A(u_k) = (A(u))_1 + \alpha_k((A(u_k))_2 - (A(u_k))_1), \quad \forall k \in \{1, 2, \dots, n\}$. The requirement (3a) can be rewritten as $\hat{d}(A(u), B(u)) \leq_{II} \hat{d}(A(u), C(u))$, where \hat{d} is defined as

 $\hat{d}(x, y) = [d_{|.|}(x_1, y_1), d_{|.|}(x_2, y_2)]$, for all x, y in L^I , with $d_{|.|}(x_1, y_1) = |x_1 - y_1|$, for all x_1, y_1 in [0, 1].

A weak similarity measure of the first kind

A similarity measure of interval-valued fuzzy sets is a mapping $S: \mathcal{F}_{\mathcal{L}^{I}}^{F}(U)^{2} \rightarrow L^{I}$ if it satisfies the following set of axioms for all A, B, C in $\mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$:

- $S(A, B) = 1_{\mathcal{L}^{I}}$ if A = B and A, B are crisp or fuzzy sets,
- (S(A, B))₂ = 1 if A = B and A, B are neither crisp sets nor fuzzy sets,

A weak similarity measure of the second kind

- $S(A, B) = 1_{\mathcal{L}^{I}}$ if A = B and A, B are crisp or fuzzy sets,
- (S(A, B))₂ = 1 if A = B and A, B are neither crisp sets nor fuzzy sets,
- $S(A, C) \leq_{L^{I}} \inf(S(A, B), S(B, C)) \text{ if } D_{(1,1)}A \subseteq D_{(0,0)}B$ and $D_{(1,1)}B \subseteq D_{(0,0)}C$.

A strong similarity measure

- $S(A, B) = 1_{\mathcal{L}^I}$ if A = B and A, B are crisp or fuzzy sets,
- (S(A, B))₂ = 1 if A = B and A, B are neither crisp sets nor fuzzy sets,
- $\textbf{O} \quad \mathcal{S}(A,B) \geq_{L^{I}} \mathcal{S}(A,C) \text{ if } \hat{d}(A(u),B(u)) \leq \hat{d}(A(u),C(u)) \\ \text{ for all } u \in U.$

$$\begin{split} R_1(A,B) &= \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(A \cap_{\mathcal{T}} B) \\ & \oslash \operatorname{sup}(\operatorname{card}_I(A), \operatorname{card}_I(B))), \\ R_3(A,B) &= \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(A \cap_{\mathcal{T}} B) \\ & \oslash \inf(\operatorname{card}_I(A), \operatorname{card}_I(B))), \\ R_5(A,B) &= \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(A \cap_{\mathcal{T}} B) \\ & \oslash \operatorname{card}_I(A \cup_{\mathcal{S}} B)), \\ R_8(A,B) &= \inf(1_{\mathcal{L}^I}, \operatorname{sup}(\operatorname{card}_I(A), \operatorname{card}_I(B)) \\ & \oslash \operatorname{card}_I(A \cup_{\mathcal{S}} B)), \\ R_{11}(A,B) &= \inf(1_{\mathcal{L}^I}, \inf(\operatorname{card}_I(A), \operatorname{card}_I(B)) \\ & \oslash \operatorname{sup}(\operatorname{card}_I(A), \operatorname{card}_I(B))), \\ R_{14}(A,B) &= \inf(1_{\mathcal{L}^I}, \inf(\operatorname{card}_I(A), \operatorname{card}_I(B))), \\ & \oslash \operatorname{card}_I(A \cup_{\mathcal{S}} B)), \\ R_{16}(A,B) &= 1_{\mathcal{L}^I}. \end{split}$$

Set difference and symmetric difference

 $\begin{array}{l} A \setminus_{\mathcal{T},\mathcal{N}} B = A \cap_{\mathcal{T}} \operatorname{co}_{\mathcal{N}} B \text{ and} \\ A \Delta_{\mathcal{T},\mathcal{S},\mathcal{N}} B = (A \cap_{\mathcal{T}} \operatorname{co}_{\mathcal{N}} B) \cup_{\mathcal{S}} (\operatorname{co}_{\mathcal{N}} A \cap_{\mathcal{T}} B) \end{array}$

$$\begin{split} R_2(A, B) &= \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(A \bigtriangleup_{\mathcal{T}, \mathcal{S}, \mathcal{N}} B)) \\ & \oslash \operatorname{sup}(\operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(A \setminus_{\mathcal{T}, \mathcal{N}} B)), \\ & \operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(B \setminus_{\mathcal{T}, \mathcal{N}} A)))), \\ R_4(A, B) &= \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(A \bigtriangleup_{\mathcal{T}, \mathcal{S}, \mathcal{N}} B)) \\ & \oslash \inf(\operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(A \setminus_{\mathcal{T}, \mathcal{N}} B)), \\ & \operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(B \setminus_{\mathcal{T}, \mathcal{N}} A)))), \\ R_6(A, B) &= \inf(1_{\mathcal{L}^I}, \operatorname{card}_I \operatorname{co}_{\mathcal{N}}(A \bigtriangleup_{\mathcal{T}, \mathcal{S}, \mathcal{N}} B) \oslash n) \\ R_7(A, B) &= \inf(1_{\mathcal{L}^I}, \operatorname{sup}(\operatorname{card}_I(A \setminus_{\mathcal{T}, \mathcal{N}} B), \\ & \operatorname{card}_I(B \setminus_{\mathcal{T}, \mathcal{N}} A)) \oslash \\ & \oslash \operatorname{card}_I(A \bigtriangleup_{\mathcal{T}, \mathcal{S}, \mathcal{N}} B)) \end{split}$$

 $R_9(A, B) = \inf(1_{\mathcal{L}^I}, \sup(\operatorname{card}_I(\operatorname{co}_{\mathcal{N}}(A \setminus_{\mathcal{T}, \mathcal{N}} B))),$ $\operatorname{card}_{I}(\operatorname{co}_{\mathcal{M}}(B \setminus_{\mathcal{T} \mathcal{M}} A)))) \oslash n$ $R_{10}(A, B) = \inf(1_{C^{I}}, \inf(\operatorname{card}_{I}(A \setminus_{\mathcal{T}, \mathcal{N}} B)),$ $\operatorname{card}_{I}(B \setminus_{\mathcal{T},\mathcal{N}} A))$ \oslash sup(card_I($A \setminus_{\mathcal{T},\mathcal{N}} B$), card_I($B \setminus_{\mathcal{T},\mathcal{N}} A$))) $R_{12}(A, B) = \inf(1_{\mathcal{L}^{I}}, \inf(\operatorname{card}_{I}(\operatorname{co}_{\mathcal{N}}(A \setminus_{\mathcal{T}, \mathcal{N}} B))),$ $\operatorname{card}_{I}(\operatorname{co}_{\mathcal{N}}(B \setminus_{\mathcal{T},\mathcal{N}} A)))$ \oslash sup(card_I(co_M(A _{T,M} B))), $\operatorname{card}_{I}(\operatorname{co}_{\mathcal{M}}(B \setminus_{\mathcal{T} \mathcal{M}} A))))$ $R_{13}(A, B) = \inf(1_{\mathcal{C}^{I}}, \inf(\operatorname{card}_{I}(A \setminus_{\mathcal{T}, \mathcal{N}} B)),$ $\operatorname{card}_{I}(B \setminus_{\mathcal{T},\mathcal{N}} A))$ $\oslash \operatorname{card}_{I}(A \Delta_{\mathcal{T},S,\mathcal{N}}B))$ $R_{15}(A, B) = \inf(1_{\mathcal{L}^{I}}, \inf(\operatorname{card}_{I}(\operatorname{co}_{\mathcal{N}}(A \setminus_{\mathcal{T}.\mathcal{N}} B))),$ $\operatorname{card}_{I}(\operatorname{co}_{\mathcal{M}}(B \setminus_{\mathcal{T} \mathcal{M}} A))) \oslash n).$

- $\oplus: (ar{L}^I)^2 o ar{L}^I$ is continuous and satisfies 1–5 and 5*;
- $\otimes: (ar{L}^I_+)^2 o ar{L}^I_+$ is continuous and satisfies 1–5 and 5*;
- \oslash is the division operator derived from \otimes and extended to \bar{L}^I_+ in such a way that
 - $\bullet \ x \oslash y \in \bar{D}_+^{+\infty} \iff (x,y) \in (\bar{D}_+^{+\infty})^2 \text{, for all } x,y \text{ in } \bar{L}_+^I,$
 - $x \oslash y = 1_{\mathcal{L}^{I}} \iff x = y \in D$, for all x, y in L_{+}^{I} ,
 - $x \oslash y \not\geq_{L^{I}} 1_{L^{I}}$, for all $(x, y) \in (\overline{L}^{I, +\infty}_{+})^{2} \setminus (\overline{D}^{+\infty}_{+})^{2}$ satisfying $x \leq_{L^{I}} y$, and

•
$$0_{\mathcal{L}^{I}} \oslash 0_{\mathcal{L}^{I}} = 1_{\mathcal{L}^{I}};$$

• card_I is a cardinality of interval-valued fuzzy sets;

Theorem

Let \mathcal{T} be a t-norm on \mathcal{L}^{I} . Then the mapping $R_{1}: \mathcal{F}_{\mathcal{L}^{I}}^{F}(U) \to L^{I}$, for all A, B in $\mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$ given as follows:

 $R_1(A,B) = \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(A \cap_{\mathcal{T}} B) \oslash \operatorname{sup}(\operatorname{card}_I(A), \operatorname{card}_I(B))),$

is a weak similarity measure of interval-valued fuzzy sets iff $f_I(\mathcal{T}(A(u), A(u))) = f_I(A(u)) \in D$, for all $u \in U$ and $A \in \mathcal{F}^F_{[0,1]}(U)$ with $A \neq \emptyset$.

Corollary 1

Let \mathcal{T} be a t-norm on \mathcal{L}^{I} . Assume that the cardinality pattern f_{I} associated with card_I satisfies $f_{I}(a) = f_{I}(b) \in D \iff a = b \in D$, for all a, b in L^{I} . Then the mapping $R_{1}: \mathcal{F}_{\mathcal{L}^{I}}^{F}(U) \to L^{I}$, for all A, B in $\mathcal{F}_{\mathcal{L}^{I}}^{F}(U)$ given as follows:

 $R_1(A,B) = \inf(1_{\mathcal{L}^I}, \operatorname{card}_I(A \cap_{\mathcal{T}} B) \oslash \operatorname{sup}(\operatorname{card}_I(A), \operatorname{card}_I(B))),$

is a weak similarity measure of interval-valued fuzzy sets iff $\mathcal{T}|_{D} = \inf.$

Corollary 2

Let \mathcal{T} be a t-norm on \mathcal{L}^I . Assume that the cardinality pattern f_I associated with card_I is strictly increasing. Then the mapping R_1 is a weak similarity measure of interval-valued fuzzy sets iff $\mathcal{T}|_D = \inf$.

Corollary 3

Let \mathcal{T} be a t-norm on \mathcal{L}^I , continuous on D and $\mathcal{T} < \inf$ on $D \setminus \{0, 1\}$. Then the mapping R_1 is a weak similarity measure of interval-valued fuzzy sets iff $f_I(y) = f_I(x)$ for all x and y in $L_{12}^I = \{x | x \text{ in } L^I \text{ and } x_1 > 0 \text{ and } x_2 < 1\}.$

If we do not drop the property 2 $(d'(\operatorname{card}_{I}(A \cap_{\mathcal{T}} A)) \otimes d'(\operatorname{card}_{I}(A)) \otimes \\
\otimes [\sqrt{\frac{(\operatorname{card}_{I}(A))_{1}(\operatorname{card}_{I}(A))_{2}}{(\operatorname{card}_{I}(A \cap_{\mathcal{T}} A))_{1}(\operatorname{card}_{I}(A \cap_{\mathcal{T}} A))_{2}}}, \sqrt{\frac{(\operatorname{card}_{I}(A))_{1}(\operatorname{card}_{I}(A))_{2}}{(\operatorname{card}_{I}(A \cap_{\mathcal{T}} A))_{1}(\operatorname{card}_{I}(A \cap_{\mathcal{T}} A))_{2}}}])_{1} \leq \\
\leq 1, \text{ where the mapping} \\
d': \bar{L}_{+,0}^{I} \to \bar{D}'' = \left\{ \left[\frac{1}{x_{2}}, x_{2}\right] \mid x_{2} \in [1, +\infty[\right\} \text{ is defined as follows:} \\
d'(x) = \left[\sqrt{\frac{x_{1}}{x_{2}}}, \sqrt{\frac{x_{2}}{x_{1}}}\right], \text{ for all } x \in \bar{L}_{+,0}^{I}.$