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Local properties of plane graphs before 1997

Let us mention selected classical results on the structure of plane
graphs:

Lemma (Legendre)

Every plane graph contains a vertex of degree at most 5.

Theorem (Wernicke 1904)

Every plane triangulation of minimum degree 5 contains a 5-valent

vertex adjacent with ≤ 6-valent vertex.

Theorem (Franklin 1922)

Every plane triangulation of minimum degree 5 contains a 5-valent

vertex adjacent with two ≤ 6-valent vertex.
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Local properties of plane graphs before 1997

Theorem (Lebesgue 1940)

Each 3-connected plane graph contains

(a) a 3-face whose type is one of the following:
(i) (3, i, j), 3 ≤ i ≤ 6, i ≤ j
(ii) (3, 7, i), 7 ≤ i ≤ 41
(iii) (3, 8, i), 8 ≤ i ≤ 23
(iv) (3, 9, i), 9 ≤ i ≤ 17
(v) (3, 10, i), 10 ≤ i ≤ 14
(vi) (3, 11, i), 11 ≤ i ≤ 13

(vii) (4, 4, i), 4 ≤ i
(viii) (4, 5, i), 5 ≤ i ≤ 19
(ix) (4, 6, i), 6 ≤ i ≤ 11
(x) (4, 7, i), 7 ≤ i ≤ 9
(xi) (5, 5, i), 5 ≤ i ≤ 9
(xii) (5, 6, i), 6 ≤ i ≤ 7

or
(b) a 4-face whose type is one of the following:

(i) (3, 3, 3, i), 3 ≤ i
(ii) (3, 3, 4, i), 4 ≤ i ≤ 11
(iii) (3, 3, 5, i), 5 ≤ i ≤ 7
(iv) (3, 4, 3, i), 4 ≤ i ≤ 11

(v) (3, 4, 4, i), 4 ≤ i ≤ 5

(vi) (3, 4, 5, 4)

(vii) (3, 5, 3, i), 5 ≤ i ≤ 7
or

(c) a 5-face of type (3, 3, 3, 3, i), 3 ≤ i ≤ 5.
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Local properties of plane graphs before 1997

Corollary

Each 3-connected plane graph contains an edge incident with a

face of size at most 5 such that sum of degrees of endvertices of

this edge is at most 14.

Theorem (Kotzig 1955)

Every 3-connected plane graph contains an edge such that sum of

degrees of its endvertices is at most 13, and at most 11 in the case

of absence of 3-valent vertices. The bounds 13 and 11 are best

possible.

Theorem (Borodin 1989)

Every plane graph of minimum degree 5 contains a triangular face

such that sum of degrees of its vertices is at most 17. The bound

17 is best possible.

Tomá² Madaras Light graphs theory and related problems



Local properties of plane graphs before 1997

Corollary

Each 3-connected plane graph contains an edge incident with a

face of size at most 5 such that sum of degrees of endvertices of

this edge is at most 14.

Theorem (Kotzig 1955)

Every 3-connected plane graph contains an edge such that sum of

degrees of its endvertices is at most 13, and at most 11 in the case

of absence of 3-valent vertices. The bounds 13 and 11 are best

possible.

Theorem (Borodin 1989)

Every plane graph of minimum degree 5 contains a triangular face

such that sum of degrees of its vertices is at most 17. The bound

17 is best possible.

Tomá² Madaras Light graphs theory and related problems



Local properties of plane graphs before 1997

Corollary

Each 3-connected plane graph contains an edge incident with a

face of size at most 5 such that sum of degrees of endvertices of

this edge is at most 14.

Theorem (Kotzig 1955)

Every 3-connected plane graph contains an edge such that sum of

degrees of its endvertices is at most 13, and at most 11 in the case

of absence of 3-valent vertices. The bounds 13 and 11 are best

possible.

Theorem (Borodin 1989)

Every plane graph of minimum degree 5 contains a triangular face

such that sum of degrees of its vertices is at most 17. The bound

17 is best possible.

Tomá² Madaras Light graphs theory and related problems



Introducing light graphs

All these results concerned small subgraphs. The �rst result on
subgraphs with variable number of vertices is by Fabrici and
Jendrol':

Theorem (Fabrici and Jendrol' 1997)

Each 3-connected plane graph G that contains a k-vertex path,

contains also a k-vertex path such that each its vertex is of degree

at most 5k in G. The bound 5k is best possible.

What is the common feature of these results ?
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Introducing light graphs

All these results obey the following common form:

Statement:

Every graph G from some family H of plane graphs contains certain
subgraph H such that sum of degrees of this subgraph is "small".

Here "small" means being bounded by some constant that is the
same for all graphs G ∈ H.
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Introducing light graphs

De�nition

Let H be a family of graphs and let H be a connected graph such
that at least one member of H contains a subgraph isomorphic to
H. Let ϕ(H,H) be the smallest integer with the property that
each graph G ∈ H which contains a subgraph isomorphic to H,
contains also a subgraph K ∼= H such that

(∀x ∈ V (K)) degG(x) ≤ ϕ(H,H).

If such an integer does not exist, we put ϕ(H,H) = +∞.
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Introducing light graphs

De�nition

Similarly, let w(H,H) be the smallest integer such that each graph
G ∈ H containing a subgraph isomorphic to H, contains also a
subgraph K ∼= H such that∑

x∈V (K)

degG(x) ≤ w(H,H).

If such an integer does not exist, we put w(H,H) = +∞.

We say that the graph H is light in the family H if ϕ(H,H) < +∞
(or, equivalently, w(H,H) < +∞).
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Selected results on light graphs

Notation:

Pk . . . k-vertex path
Ck . . . k-vertex cycle
Sk . . . K1,k

P . . . family of all plane graphs
Pc(δ, ρ) . . . family of all c-connected plane graphs of minimum

degree ≥ δ and minimum face size ≥ ρ
T (δ) . . . family of all plane triangulations of minimum

degree ≥ δ
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Selected results on light graphs

Using the formalism of light graphs, the earlier mentioned results
are translated as follows:

Legendre: ϕ(K1,P) = 5

Wernicke: ϕ(K2, T (5)) = 6
Franklin: ϕ(P3, T (5)) = 6
Kotzig: w(K2,P(3, 3)) = 13, w(K2,P(4, 3)) = 11
Borodin: w(K3,P1(5, 3)) = 17
Fabrici and Jendrol': ϕ(Pk,P3(3, 3)) = 5k
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Selected results on light graphs

Surprisingly, paths are the only light graphs in the family of
3-connected plane graphs:

Theorem (Fabrici and Jendrol' 1997)

For each integer m and each plane graph H which is not a path,

there exists a 3-connected plane graph Gm such that each its

subgraph K ∼= H contains a vertex of degree at least m in Gm.

Hence, for the family of 3-connected plane graphs, the set of light
graphs is "trivial".
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Selected results on light graphs

Families with complete characterization of light graphs:

Family Light graphs Value of ϕ Heavy graphs References
P3(3, 3) Pk 5k all other Fabrici, Jendro© 1997
P3(4, 3) Pk 5k − 7 for k ≥ 8 all other Fabrici, Hexel,

4k − 1 for 4 ≤ k ≤ 7 Jendro©, Walther 1999
2k + 3 for 2 ≤ k ≤ 3

P3(3, 4) Pk ≤ 5
2 k all other Harant, Jendro©, Tká£ 1999

P4(4, 3) Pk ≤ 2k + 3 Hexel, Walther 1999
all other Mohar 2000

P2(3, 3) K1 5
K2 10 Kotzig 1955

all other Jendrol' 1997
P2(4, 3) K1 4

K2 7 Kotzig 1955
P3 9 Jendrol' 1999
P4 ≤ 191 all other T.M., �krekovski 2004
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Selected results on light graphs

The family P1(5, 3):

Light graphs Value of ϕ Value of w Heavy graphs References
K1 5 5
K2 6 11 Wernicke 1904
P3 6 17 Franklin 1922
P4 7 23 Jendrol' 1999

Jendrol', T.M. 1996
P5 ≤ 9 29 Jendrol' 1999;

Mi£ová, T.M. 2003
S3 7 23 Jendrol', T.M. 1996
S4 10 30 Jendrol', T.M. 1996;

Borodin, Woodall 1998
C3 7 17 Borodin 1989
C4 11 Soták
C5 10
C6 ≤ 107 Mohar, �krekovski, Voss 2004
C7 ≤ 359 T.M., �krekovski, Voss 2007

some other T.M., Soták
small graphs

all with ∆(H) ≥ 5 Fabrici 2002
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Selected results on light graphs

Observe the discrepancy between the family P3(4, 3) and P3(5, 3) -
the �rst yields only "trivial" set of light graphs (just paths), while
the second a wide variety of light graphs other than paths.

Mohar, �krekovski and Voss (2004) suggested to explore the space
"in between", that is, the family of plane graphs of minimum
degree at least 4 and minimum edge weight at least 9 (or,
informally, with the "minimum degree" 4.5):

Light graphs Value of ϕ Value of w Heavy graphs
. . . . . . . . . . . .
P3 17
P4 23
C3 21
C4 ≤ 22 ≤ 35
C5 ≤ 107
C6 ≤ 107
S3 23
S4 ≤ 107

Pk for k ≥ 8
Sk for k ≥ 5
Ck for k ≥ 7
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Selected results on light graphs

When relaxing the condition on minimum vertex degree and
considering just the minimum edge weight constraint, it is also
possible to obtain results with nontrivial light graphs:

Theorem (T.M., �krekovski 2004)

Let R(w) be the family of all plane graphs of minimum degree at

least 3 and minimum edge weight at least w.

1 S4 is light in R(w) if and only if 9 ≤ w ≤ 13
2 C3 (C4) is light in R(w) if and only if 10 ≤ w ≤ 13
3 P4 is light in R(w) if and only if 8 ≤ w ≤ 13.
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Selected results on light graphs

The similar situation and discrepancy appears when considering the
family P3(3, 5):

Light graphs Value of ϕ Value of w Heavy graphs
. . . . . . . . . . . .
C5 5 17 Lebesgue 1940

Ck for k > 5, k 6= 14 Jendrol', Owens 2001
S3 13 Madaras 2004

several other Madaras 2007
small graphs

C5+ path Pk 90k Hajduk, Soták 2006
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Selected results on light graphs

In general, a nontrivial set of light graphs may be enforced by
mutual combination of four constraints: minimum vertex degree
≥ δ, minimum face size ≥ ρ, minimum edge weight ≥ w and
minimum dual edge weight ≥ w∗. There are exactly 35 quadruples
(δ, ρ, w, w∗) for which the corresponding family P(δ, ρ, w, w∗) is
nonempty.
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Selected results on light graphs

Family Light graphs Value of ϕ Heavy graphs References
P(3, 3, 6, 12) C3 4 Ferencová, T.M. 2007
P(3, 3, 6, 13) C10 ≤ 5 Cr for 4 ≤ r ≤ 9
P(3, 5, 6, 11) C6 T.M. 2004

C7 Ferencová, T.M. 2007
C8

C9 T.M. 2004
C10 Ferencová, T.M. 2007

P(3, 3, 7, 9) C3 ≤ 6 Ferencová, T.M. 2007
P(3, 4, 7, 8) C4 ≤ 11
P(3, 3, 8, 8) C3

C4
C5

C6
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Selected results on light graphs

There are other conditions which may enforce nontrivial light
graphs:

minimum degree and minimum weight of prescribed subgraph
(other than edge): an example - plane triangulations of
minimum degree 5 and minimum triangle weight 17 (T.M.,
Fabrici, Zlámalová 2007)

excluding cycles of speci�ed length (Fijavº, T.M. -
unpublished)
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Light graphs in families of nonplanar graphs

Along with the development of light graphs theory for plane graphs,
an analogical theory was developed by Jendrol' and Voss for graphs
embedded in orientable/nonorientable surfaces.

On the other hand, a variety of light structures may be also found
in graphs drawn in the plane with crossings.
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Light graphs in families of nonplanar graphs

De�nition

A graph is called 1-planar if there exists its drawing in the plane
such that every edge is crossed by at most one other edge.

Lemma (Ringel 1965)

Each 1-planar graph contains a vertex of degree at most 7; the

bound 7 is best possible.

Theorem (Fabrici, T.M. 2007)

Each 3-connected 1-planar graph contains an edge such that its

endvertices are of degree at most 20. The bound 20 is best possible.
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Light graphs in families of nonplanar graphs

Family Light graphs Value of ϕ Heavy graphs References
P5 on > 4 vertices Fabrici, T.M. 2007

K4, K−4 , K+
1,3

C3, C4
P5 C4 ≤ 9 D. Hudák, T.M. 2008

with girth 4 K1,4 ≤ 11

P6 C3 10 Fabrici, T.M. 2007
K1,3 ≤ 15
K1,4 ≤ 23

on > 6 vertices
K6 − 2K2

P7
K1,5 ≤ 11 Fabrici, T.M. 2007
K1,6 ≤ 15
K4 ≤ 13 D. Hudák, T.M. 2008

K?
2,3 ≤ 13
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Light sets of graphs

The de�nition of light graph in a family of graphs involves the
existence of an isomorphic copy of �xed graph in graphs of given
family such that degrees of all vertices of this copy are "small".

Instead of one �xed graph, one may specify a �nite set of graphs
and look for isomorphic copies of some graphs from this set:

Theorem (Appel, Haken)

Each plane triangulation of minimum degree 5 contains either two

adjacent 5-vertices or a triangular face of weight 17.
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Light sets of graphs

Again, the de�nition of light set of graphs was inspired by the
following general results:

Theorem (Fabrici and Jendrol' 1998)

Each 3-connected plane graph G on at least k ≥ 3 vertices contains

a connected k-vertex subgraph K such that each its vertex is of

degree at most 4k + 3 in G. The bound 4k + 3 is best possible.

Theorem (Enomoto and Ota 1999)

Each 3-connected plane graph G on at least k ≥ 3 vertices contains

a connected k-vertex subgraph K of weight at most 8k − 1.
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a connected k-vertex subgraph K of weight at most 8k − 1.
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Light sets of graphs

De�nition

Let G be a family of graphs and let H be a �nite set of graphs with
the property that each graph of G contains a proper subgraph
isomorphic to at least one member of H. Let τ(H,G) be the
smallest integer with the property that every graph G ∈ G contains
a subgraph K which is isomorphic to one of the elements in H such
that, for every vertex v ∈ V (K),

degG(v) ≤ τ(H,G).

If such a �nite τ(H,G) does not exist we write τ(H,G) = +∞.
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every graph G ∈ G contains a subgraph K which is isomorphic to
one of the elements in H such that∑

x∈V (K)

degG(x) ≤ f(H,G).

If such a �nite number does not exist we write f(H,G) = +∞.

The set H is light in the family G if τ(H,G) < +∞ (or
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Light sets of graphs

If we denote the set of all k-vertex trees as Tk, then the results
above translate, using de�ned formalism, as

τ(Tk,P3(3, 3)) = 4k + 3, f(Tk,P3(3, 3)) ≤ 8k − 1

Theorem (Jendrol' and Voss 2004)

For S = {Pk,K1,3}, τ(S,P3(3, 3)) = 4k + 3.

Theorem (Jendrol' and Voss 2004)

Let S be a �nite family of connected plane graphs H such that

∆(H) ≥ 3 or δ(H) ≥ 2. Then S is not light in P3(3, 3).

Theorem (Fabrici 2002)

τ(Tk,P3(4, 3)) = 4k − 1 for k ≥ 4.
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Light sets of graphs

We also studied light sets comprised of cycles:

Theorem (T.M. 2004)

τ({C8, C9},P3(3, 5)) ≤ 9.

Theorem (T.M. 2007)

τ({C9, C11},P3(3, 5)) ≤ 23.

Note that neither one of C8, C9, C11 is light in P3(3, 5).
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Light induced graphs

Considering variation of the light graph de�nition, one may look for
induced copies of given graph that are light:

Theorem (T.M. 2007)

Each 3-connected plane graph contains an induced 3-path whose

sum of degrees of vertices is at most 17. The bound 17 is best

possible.
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Light induced graphs

De�nition

Let H be a family of graphs and let H be a connected graph such
that at least one member of H contains an induced subgraph
isomorphic to H. Let ϕI(H,H) be the smallest integer with the
property that each graph G ∈ H which contains an induced
subgraph isomorphic to H, contains also an induced subgraph
K ∼= H such that

(∀x ∈ V (K)) degG(x) ≤ ϕI(H,H).

If such an integer does not exist, we put ϕI(H,H) = +∞.
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Light induced graphs

De�nition

Similarly, let wI(H,H) be the smallest integer with the property
that each graph G ∈ H which contains an induced subgraph
isomorphic to H, contains also an induced subgraph K ∼= H such
that ∑

x∈V (K)

degG(x) ≤ wI(H,H).

If such an integer does not exist, we put wI(H,H) = +∞.

We say that the graph H is induced light in the family H if
ϕI(H,H) < +∞ (or equivalently, wI(H,H) ≤ +∞).

Theorem (R. Soták, T.M.)

A graph H is induced-light in the family P(3, 3) if and only if

H ∼= Pk.
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Gravity of a graph in a family

If a graph H is heavy in a family H then, for every integer m, there
exists a graph Gm ∈ H such that each isomorphic copy of H in
Gm contains at least one vertex of degree at least m in Gm.

For given heavy graph H in H, an integer m and an integer
k ∈ [1, |V (H)|], does there exist a graph Gm ∈ H such that each
isomorphic copy of H in Gm contains at least k heavy vertices ?

De�nition (Madaras and �krekovski 2007)

The gravity g(H,H) of a connected graph H in the family H is the
largest integer k such that, for every integer m, there exists a
graphGm ∈ H, Gm ⊇ H such that each isomorphic copy of H in
Gm contains at least k vertices of degree at least m in Gm.
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Gravity of a graph in a family

Theorem (Madaras and �krekovski 2007)

g(Pn,P) =

{
n− 3, n ∈ {3, 5}
n− 2 otherwise.

Theorem (Madaras and �krekovski 2007; Dvo°ák, �krekovski and
Valla 2006)

g(Pn,P2) =

{
n− 3, n ∈ {5, 7, 8, 9}
n− 2 otherwise.

Theorem (Madaras and �krekovski 2007)

g(Pn,P∗
2 ) = n− o(n) for in�nitely many n.
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Gravity of a graph in a family

Considering a hierarchy of graphs according to their gravity in given
family, at the bottom level, there are light graphs. At the next
level, there are heavy graphs whose all connected subgraphs are
light. Such graphs are called almost light.

Note that if all connected subgraphs of H are light, H need not
have the gravity 1.

Theorem (Madaras and �krekovski 2007)

The only almost light graph in P3 is K2.

In the family of graphs of P3 having minimum edge weight at least

7, there are two almost light graphs, P4 and K1,3.

In P4, there are three almost light graphs: C3, K1,3 and P5.
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Gravity of a graph in a family

At the top of the previously mentioned hierarchy, there are graphs
H such that g(H,H) = |V (H)| (absolutely heavy graphs).

Theorem (Madaras and �krekovski 2007)
1 Each graph which is not a tree is absolutely heavy in P.

2 In�nitely many trees are absolutely heavy in P.

3 Each cycle is absolutely heavy in P3.

4 Each odd cycle and cycles of length 4, 6, 8, or 10 are

absolutely heavy in P∗.

Which cycles are absolutely heavy in P∗ ?
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Light graphs incident with small faces

Plane graphs contain not only small degree vertices, but also small
degree vertices incident with small faces: in 1940, H. Lebesgue
proved that each 3-connected plane graph contains a vertex of
degree at most 5 which is incident with a face of size at most 5.

In general, one cannot guarantee the existence of small vertices
incident only with small faces, as seen from the pyramide and the
antiprism graph.

However, the result of Lebesgue on face types imply that each
3-connected plane graph of minimum degree 5 contains a 5-vertex
incident with four triangular faces and one face of size at most 5
(the face size 5 is best possible).
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Light graphs incident with small faces

Theorem (T.M. 2004)

Each 3-connected plane graph of minimum face size 5 contains a

5-face adjacent to 5- or 6-face such that all their vertices are of

degree at most 9.

Theorem (T.M. 2007)

Each 3-connected plane graph of minimum face size 5 contains a

5-face adjacent to two faces of size at most 6 such that all their

vertices are of degree at most 23.

In dual form, this means that each 3-connected plane graph of
minimum degree 5 contains a light edge and a light 3-path (as in
theorems of Wernicke and Franklin) which are incident only with
faces of size at most 9 and 23, respectively.
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Light graphs incident with small faces

De�nition

Let H be a family of plane (or, generally, embedded) graphs and let
H be a connected graph being a subgraph of at least one member
of H. Let Φ(H,H) be the lexicographic minimum of all pairs (a, b)
of integers such that each graph G ∈ H containing H contains also
a subgraph K ∼= H such that degG(x) ≤ a and degG(α) ≤ b for
each x ∈ V (K) and each face α ∈ F (G) incident with x. If one of
a, b does not exist, we put the corresponding component of
Φ(H,H) equal to +∞.

The graph H is doubly light in the family H if both components of
Φ(H,H) are �nite.

Alternatively, we may consider the requirement of bounded size
only for those faces of G that are incident with an edge of K. This
yield a notion of weakly doubly light graph.
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Light graphs incident with small faces

Some recent results:

paths (of certain length) are not even weakly doubly light in
P3(δ, ρ)

C3 is not doubly light in P3(5, 3), but it is weakly doubly light
in this family

C3 is doubly light in P(5, 3, 11, 6) with
Φ(C3,P(5, 3, 11, 6)) ≤ (7, 5)
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Thanks for your attention :-)
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