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Problem to be solved

Given the plane triangle

D = { [x , y ] : 0 ≤ x , 0 ≤ y , x + y ≤ 4 }

we consider the map

F : D → D, [x , y ] 7→ [x(4− x − y), xy ]

and its periodic points.
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Interior points with period n ≤ 4
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Interior points with period n ≤ 5
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Interior points with period n ≤ 6
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Interior points with period n ≤ 7
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Interior points with period n ≤ 8
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Interior points with period n ≤ 9
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Interior points with period n ≤ 25



Interior points with period n ≤ 30



Interior points with period n ≤ 32



Interior points with period n ≤ 35



Interior points with period n ≤ 36



Attracting versus repulsive fixed points

If x0 = f (x0) and |f ′(x0)| < 1 then

x0 = lim
k→∞

xk

where xk = f (xk−1) and x1 is arbitrary but sufficiently closed to x0.
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Attracting versus repulsive fixed points
The equation

x = tan x

is equivalent to

x = kπ + arctan x , where k ∈ Z.
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Relationship between lower and interior periodic points

Theorem (Main result)

Let P be a lower saddle fixed point of the map F n. Then there is
an interior fixed point Q of F n with the same itinerary.

A

B

H0,0L H4,0LH2,0L

H2,2L

H0,4L
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Itinerary

For a fixed point P of the map F n it is sufficient to consider its
itinerary W as a sequence (wi )

n−1
i=0 defined by

wi =

{
a if F i (P) ∈ A ,

b if F i (P) ∈ B .

Such a sequence we will write in a shorten form

W = aj1bk1 · · · ajmbkm .
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Notation

It is natural to express the triangle D as the union

D = DL ∪ DR ,

DL

DR



Notation

It is natural to express the triangle D as the union

D = DL ∪ DR ,

where
DL = { [x , y ] ∈ D : x ≤ 2} and

DR = { [x , y ] ∈ D : x ≥ 2} ,

because
F (DL) = D = F (DR) .



Notation

Put also

D̃L = { [x , y ] ∈ D : 0 < x ≤ 2} and

D̃ = D \ {[0, 0]}.

D
�

L

DR
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Inverse maps

The map F is not invertible, but F restricted to D̃L and DR is.
The inverse maps of these restrictions are given by

L : D̃ → D̃L , [x , y ] 7→
[
2−

√
4− x − y , y

2−
√

4−x−y

]
R : D → DR , [x , y ] 7→

[
2 +

√
4− x − y , y

2+
√

4−x−y

]
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Lower fixed point of F n

Note that F : [x , 0] 7→ [f (x), 0], where
f : 〈0, 4〉 → 〈0, 4〉, f (x) = x(4− x) is the logistic map, which is
conjugated with the tent map
T : 〈0, 1〉 → 〈0, 1〉 ,T (t) = 1− |1− 2t|

via the conjugation
h : 〈0, 1〉 → 〈0, 4〉, h(t) = 4 sin2(πt/2). Since any fixed point of
the map T n is of the form 2k/(2n ± 1), any lower fixed point of

the map F n is of the form
[
4 sin2 kπ

2n±1 , 0
]
, where n and k are

integers such that 0 < n and 0 ≤ 2k < 2n ± 1.
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Jacobi matrix

Let P = [x0, 0] ∈ D be a fixed point of the map F n. In this case

P =
[
4 sin2 kπ

2n±1 , 0
]
. Then the Jacobi matrix of the map F n at the

point P has a form

(
λ1 µ
0 λ2

)
=

 ∓2n µ

0
n−1∏
i=0

xi

 ,

where
[xi , 0] = F i (P) .
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Formula for λ2

Since

xi = 4 sin2 2ikπ

2n ± 1
,

we have

λ2 =
n−1∏
i=0

4 sin2 2ikπ

2n ± 1
.
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Question

Take n = 60, sign − and k = 5124095576030431.

λ2 =?
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Classification

For λ2 we have the possibilities

Saddle point

0 ≤ λ2 < 1, e.g. x0 = 4 sin2 π
17

Nonhyperbolic point

λ2 = 1, e.g. x0 = 4 sin2 π
15

Repulsive point

1 < λ2, e.g. x0 = 4 sin2 3π
17

Remark

All above points [x0, 0] have period 4.
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Classification

Saddle point

Lower periodic points with period n and 0 < λ2 < 1 appear for all
n ≥ 4.

Nonhyperbolic point

Lower periodic points with period n and λ2 = 1 appear for
infinitely many n, e.g. n = 4 · 3i · 5j , where i ≥ 0, j ≥ 0.

Repulsive point

Lower periodic points with period n and 1 < λ2 appear for all
n ≥ 1.
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Main result

Theorem

Let P be a lower saddle fixed point of the map F n. Then there is
an interior fixed point Q of F n with the same itinerary.
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Explicit examples

Theorem

Let P be a lower saddle fixed point of the map F n. Then there is
an interior fixed point Q of F n with the same itinerary.

Example

(i) If P = [0, 0] then Q = [1, 2] and W = a.

(ii) If P =
[
4 sin2 π

17 , 0
]

then Q =
[
1−

√
2

2 , 1 +
√

2
2

]
and

W = a3b.

(iii) If P =
[
4 sin2 π

63 , 0
]

then Q =
[
1, 3+

√
5

2

]
and W = a4b2.
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Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Problem to be solved
Periodic points by numerical results
Lower periodic points
Relationship between lower and interior periodic points

Explicit examples

Theorem

Let P be a lower saddle fixed point of the map F n. Then there is
an interior fixed point Q of F n with the same itinerary.

Example

(i) If P = [0, 0] then Q = [1, 2] and W = a.

(ii) If P =
[
4 sin2 π

17 , 0
]

then Q =
[
1−

√
2

2 , 1 +
√

2
2

]
and

W = a3b.

(iii) If P =
[
4 sin2 π

63 , 0
]

then Q =
[
1, 3+

√
5

2

]
and W = a4b2.
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Sufficient condition for saddle point

Theorem

Let P =
[
4 sin2 kπ

2n±1 , 0
]
, where n and k are integers such that

0 < n and

0 ≤ k ≤
√

2(2n ± 1)

π · 2
√

2n+1/4
.

Then P is a saddle fixed point of F n.
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Notation

Let IntFix(F n) be the set of all interior fixed points of the map F n

and IntPer(F , n) be the set all interior n-periodic of the map F .
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Estimates
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Nonexistence

Estimates

Corollary

For cardinalities of IntFix(F n) and IntPer(F , n) we have the
estimates

1 # IntFix(F n) ≥ 2
√

2
π · 2

n−
√

2n+1/4

2 # IntPer(F , n) ≥ 2
√

2
π

(
2n−
√

2n+1/4 − 21+ n
2

)
3 # IntPer(F , n) ≥ (2− ε)n

for 0 < ε < 1 and sufficiently large n.
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Existence of interior periodic points
Estimates

Relation to number theory

Estimates
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Nonexistence

Hypotheses

Hypothesis 1

If P ∈ D is a lower repulsive (nonhyperbolic) fixed point of F n,
then there is no interior fixed point of F n with the same itinerary.

Hypothesis 2

If P ∈ D is a lower saddle fixed point of F n, then there is a unique
interior fixed point of F n with the same itinerary.

Hypothesis 3

lim inf
n−>∞

# IntFix(F n)

2n
> 0 .
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Existence of interior periodic points
Estimates

Relation to number theory

Estimates
Hypotheses
Nonexistence

Nonexistence

Theorem

Let W = aj1bk1 · · · ajmbkm be an itinerary such that ji > 0, ki > 0

and
m∑

i=1
(ji + ki ) = n. If

m∑
i=1

ki ≥
m∑

i=1

j2i ,

then there is no interior fixed point of the map F n

with the itinerary W .
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Theorem

Let W = aj1bk1 · · · ajmbkm be an itinerary such that ji > 0, ki > 0

and
m∑

i=1
(ji + ki ) = n.

(i) If
m∑

i=1

ki ≥
ln 2

ln 3

m∑
i=1

j2i −
ln(4− 2

√
2)

ln 3

m∑
i=1

ji + m ,

then there is no interior fixed point of the map F n

with the itinerary W .

(ii) If
m∑

i=1

ki ≤
ln 2

ln 3

m∑
i=1

j2i −
ln π2

2

ln 3

m∑
i=1

ji −
ln 32

3π2

ln 3
m ,

then there exists an interior fixed point of the map F n

with the itinerary W .
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Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Motivation

Take x0 = 4 sin2 π
55 = 4 sin2 19605π

220−1
.

The period of [x0, 0] is 20.
Fixe an odd integer m.
Let Am be the set of all points of the form 4 sin2 kπ

m , where
k ≤ m−1

2 is coprime to m.
All these points are periodic with the same period.
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Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Main formula

Since
m−1∏
k=1

sin
kπ

m
=

m

2m−1

we obtain
m−1

2∏
k=1

4 sin2 kπ

m
=

m−1∏
k=1

2 sin
kπ

m
= m .

We are interested in

m−1
2∏

k=1
GCD(k,m)=1

4 sin2 kπ

m
=

{
p if m = pi , where p is prime

1 otherwise
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Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Case m = pi , where p is prime

Let m = pi , where p is a prime.
If Am is an orbit then corresponding λ2 = p > 1.

So, this orbit is
repelling.
If Am contains at least two orbits then λ2 < 1 appears for some
orbit.

Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Case m = pi , where p is prime

Let m = pi , where p is a prime.
If Am is an orbit then corresponding λ2 = p > 1. So, this orbit is
repelling.

If Am contains at least two orbits then λ2 < 1 appears for some
orbit.
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Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Case m 6= pi

If Am is an orbit then corresponding λ2 = 1.
If Am contains at least two orbits then one of the following holds

• λ2 = 1 for all orbits in Am.

• λ2 6= 1 for all orbits in Am, λ2 < 1 and λ2 > 1 appear for
some orbits.

• λ2 = 1, λ2 < 1 and λ2 > 1 appear for some orbits.

The last possibility was not observed.
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Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Case m 6= pi

If Am is an orbit then corresponding λ2 = 1.
If Am contains at least two orbits then one of the following holds

• λ2 = 1 for all orbits in Am.

• λ2 6= 1 for all orbits in Am, λ2 < 1 and λ2 > 1 appear for
some orbits.

• λ2 = 1, λ2 < 1 and λ2 > 1 appear for some orbits.

The last possibility was not observed.
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Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

The value of period

Let Z∗m be the multiplicative group of the ring Zm and G (2,m) be
the group generated by class of 2 in Z∗m.

Denote by ϕ(m) = #Z∗m
and ord(2,m) = #G (2,m). Note that

ord(2,m) = LCM
(

ord(2, pi2
1 ), ord(2, pi2

2 ), . . . , ord(2, pis
s )
)

for

m = pi1
1 · p

i2
2 . . . · pis

s . The period of the point 4 sin2 kπ
m is

ord(2,m)

2
if − 1 ∈ G (2,m)

and
ord(2,m) otherwise .

Moreover −1 ∈ G (2,m) if and only if there is α > 0 such that

ord(2, p
ij
j ) = 2α(2uj + 1) for all j = 1, . . . , s .
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Number of orbits

The number of orbits in Am is

ϕ(m)

ord(2,m)
if − 1 ∈ G (2,m)

and
ϕ(m)

2 ord(2,m)
otherwise .
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Number of orbits for m = pi

Let m = pi , where p is a prime. The set Am is an orbit if and only
if one of the following holds.

• 2 generates the group Z∗
pi

(This is possible only for p ≡ ±3 ( mod 8).)

For example for p = 3, 5, 11, 13, 19, 29 and any i ≥ 1, but not
for p = 43 and p = 109 any i ≥ 1.

• 2 is a square in Z∗
pi , −1 is not a square and 2 generates the

group of squares in Z∗
pi .

(This is possible only for p ≡ −1 ( mod 8).)
For example for p = 7, 23, 47 and any i ≥ 1, but not for
p = 31 and p = 127 and any i ≥ 1.

Particularly for p ≡ 1 ( mod 8) the set Am contains at least two
orbits.
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Number of orbits for m 6= pi

Let m be divisible by at least two primes.
The set Am is an orbit if and only if

• m = piqj , where p < q are primes and i , j > 0,

• the sets Api and Aqj are orbits,

• p 6≡ q ( mod 8),

• GCD(p − 1, q − 1) = 2,

• either i = 1 or q − 1 is not divisible by p.

This is true for m = 3i · 5j , 3 · 7j , 5i · 7j , 3i · 23j , but not for
m = 3i · 7j and i ≥ 2.
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Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Number of orbits for m 6= pi

Let m be divisible by at least two primes.
The set Am is an orbit if and only if

• m = piqj , where p < q are primes and i , j > 0,

• the sets Api and Aqj are orbits,

• p 6≡ q ( mod 8),

• GCD(p − 1, q − 1) = 2,

• either i = 1 or q − 1 is not divisible by p.

This is true for m = 3i · 5j , 3 · 7j , 5i · 7j , 3i · 23j , but not for
m = 3i · 7j and i ≥ 2.

Peter Maličký Dynamics of a Map of a Triangle



Existence of interior periodic points
Estimates

Relation to number theory

Classification of lower periodic points by denominators
Open problems in number theory

Number of orbits for m 6= pi

Let m be divisible by at least two primes.
The set Am is an orbit if and only if

• m = piqj , where p < q are primes and i , j > 0,

• the sets Api and Aqj are orbits,

• p 6≡ q ( mod 8),

• GCD(p − 1, q − 1) = 2,

• either i = 1 or q − 1 is not divisible by p.

This is true for m = 3i · 5j , 3 · 7j , 5i · 7j , 3i · 23j , but not for
m = 3i · 7j and i ≥ 2.
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Relations between Z∗p, Z∗p2 and Z∗pi

Let p be a prime, a 6= 0 and i ≥ 1 be integers.

• If i > j ≥ 1 and (a mod pi ) generates the group Z∗
pi then

(a mod pj) generates Z∗
pj ,

• If i > j ≥ 1 and (a mod pi ) generates the group of squares in
Z∗

pi then (a mod pj) generates the group of squares in Z∗
pj ,

• If (a mod p2) generates the group Z∗p2 then (a mod pi )
generates Z∗

pi ,

• If (a mod p2) generates the group of squares in Z∗p2 then

(a mod pi ) generates the group of squares in Z∗
pi ,
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Wieferich primes

If 2 generates Z∗p, but not Z∗p2 , then

2p−1 ≡ 1 (mod p2).

A prime with this property is called a Wieferich prime.
There are known only two Wieferich primes p = 1093 and 3511.
The other ones have to be greater than 6.7 · 1015.
However 2 does not generate Z∗p for p = 1093 and 3511.
On the other hand 2 generate the group of squares in Z∗3511 but
not in Z∗35112 .
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Artin conjecture

The question whether 2 generates Z∗p for infinitely primes is a part
the Artin conjecture.
It is also interesting whether 2 generates the group of squares in
Z∗p for infinitely primes of the form p = 8j − 1.
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Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if q = 2p + 1 is
also prime.

In such a case q is called a safe prime.

Theorem

Let p be a Sophie Germain prime and q = 2p + 1 be the
corresponding safe prime. Then Aq is an orbit.

Remark

The question whether there are infinitely many Sophie Germain
primes is open. Primes
2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233
are Sophie Germaine primes.
The corresponding safe primes are
5, 7, 11, 23, 47, 59, 83, 107, 167, 179, 227, 263, 347, 359, 383, 467.
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