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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Problem to be solved

Given the plane triangle

D={[xy]:0<x,0<y, x+y<4}
we consider the map

F:D— D, [x,y] — [x(4 —x —y), xy]

and its periodic points.
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Interior points with period n < 4




Interior points with period n <5




Interior points with period n < 6
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Interior points with period n <7




Interior points with period n < 8




Interior points with period n <9




Interior points with period n < 25




Interior points with period n < 30




Interior points with period n < 32




Interior points with period n < 35




Interior points with period n < 36




Attracting versus repulsive fixed points

If xo = f(xo0) and |f'(x0)| < 1 then

X0 = lim xg
k—o0
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Attracting versus repulsive fixed points

If xo = f(xo0) and |f'(x0)| < 1 then
= |i
0= im
where xx = f(xx—1) and x; is arbitrary but sufficiently closed to xp.
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Attracting versus repulsive fixed points

The equation
X = tanx

is equivalent to
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Attracting versus repulsive fixed points

The equation
X = tanx

is equivalent to

x = km + arctan x, where k € Z.
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Relationship between lower and interior periodic points

Theorem (Main result)

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point @ of F" with the same itinerary.

0,4

(0,0) (2,0) 4,0



Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Itinerary

For a fixed point P of the map F" it is sufficient to consider its
itinerary W as a sequence (w,-)}’;ol defined by

a ifF(P)eA,
b ifFi(P)eB.

w; =

Such a sequence we will write in a shorten form

W = gtphr ... gimpkm
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It is natural to express the triangle D as the union

D=D;UDg,

Dy

Dg




It is natural to express the triangle D as the union

D=D;UDg,
where
D ={[x,yle D:x <2} and
Dr={[x,y]eD:x>2},
because

F(DL) = D = F(Dg) .



Notation

Put also

D = {[x,y]eD:0<x<2} and
D = D\{[0,0]}.

Dpg

(o R
S
~




Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Inverse maps

The map F is not invertible, but F restricted to Dy and Dg is.
The inverse maps of these restrictions are given by

L:D— Dy, [X,y]*—>[2—\/mv z-\/%i-y}
R:D—Dr, [xyl— [24 VE=x—y. sy
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Partition

()

(0,0) 2,0 (4,0
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Lower fixed point of F"

Note that F : [x, 0] — [f(x),0], where
f:(0,4) — (0,4), f(x) = x(4 — x) is the logistic map,
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. . . - . Problem to be solved
Existence of interior periodic points L . .
Periodic points by numerical results
Lower periodic points
Relationship between lower and interior periodic points

Lower fixed point of F"

Note that F : [x, 0] — [f(x),0], where

f:(0,4) — (0,4), f(x) = x(4 — x) is the logistic map, which is
conjugated with the tent map

T:(0,1) — (0,1), T(t)=1— |1 — 2t
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Lower fixed point of F"

Note that F : [x,0] — [f(x),0], where

f:(0,4) — (0,4), f(x) = x(4 — x) is the logistic map, which is
conjugated with the tent map

T:(0,1) — (0,1) , T(t) =1 — |1 — 2¢| via the conjugation
h:(0,1) — (0,4), h(t) = 4sin®(rt/2).
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. . . - . Problem to be solved
Existence of interior periodic points L . .
Periodic points by numerical results
Lower periodic points
Relationship between lower and interior periodic points

Lower fixed point of F"

Note that F : [x, 0] — [f(x),0], where

f:(0,4) — (0,4), f(x) = x(4 — x) is the logistic map, which is
conjugated with the tent map

T:(0,1) — (0,1) , T(t) =1 — |1 — 2¢| via the conjugation
h:(0,1) — (0,4), h(t) = 4sin?(7t/2). Since any fixed point of
the map T" is of the form 2k/(2" £ 1),
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. . . - . Problem to be solved
Existence of interior periodic points L . .
Periodic points by numerical results

Lower periodic points
Relationship between lower and interior periodic points

Lower fixed point of F"

Note that F : [x, 0] — [f(x),0], where

f:(0,4) — (0,4), f(x) = x(4 — x) is the logistic map, which is
conjugated with the tent map

T:(0,1) — (0,1) , T(t) =1 — |1 — 2¢| via the conjugation
h:(0,1) — (0,4), h(t) = 4sin?(7t/2). Since any fixed point of
the map T" is of the form 2k/(2" £ 1), any lower fixed point of

the map F" is of the form {4 sin? 2,’,‘11,0 ,
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Lower fixed point of F"

Note that F : [x, 0] — [f(x),0], where

f:(0,4) — (0,4), f(x) = x(4 — x) is the logistic map, which is
conjugated with the tent map

T:(0,1) — (0,1) , T(t) =1 — |1 — 2¢| via the conjugation
h:(0,1) — (0,4), h(t) = 4sin?(7t/2). Since any fixed point of
the map T" is of the form 2k/(2" £ 1), any lower fixed point of

the map F" is of the form {4 sin? 2,’,‘11,0}, where n and k are

integers such that 0 < nand 0 <2k < 2"+ 1.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Jacobi matrix

Let P = [x0,0] € D be a fixed point of the map F". In this case

2 km
P = [4sm Tﬂ,O}
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Jacobi matrix

Let P = [x0,0] € D be a fixed point of the map F". In this case
P= {4 sin? 2,’,‘—11,0}. Then the Jacobi matrix of the map F” at the
point P has a form

2!7
Arp _ * ﬁb—l
0 X

where _
[xi,0] = F'(P) .
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Formula for A,

Since .
5 2'km

X;j = 4sin TR
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Formula for A,

Since
, 2Tk

X; = 4sin CIEE

we have

2k
2
)\2—||4sm nEl
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Question

Take n = 60, sign — and k = 5124095576030431.

A2 =7
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point
0< <1,
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point

_ a2
0< <1 eg xg=4sin %
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point

_ a2
0< <1 eg xg=4sin %

Nonhyperbolic point
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point
0< <l eg xo= 4 sin? %

Nonhyperbolic point
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point
0< <l eg xo= 4 sin? %

Nonhyperbolic point

U

15

=1 eg x= 4 sin?
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point

_ a2
0< <1 eg xg=4sin %

v

Nonhyperbolic point

_ _ -2 T
A2 =1, eg xo=4sin" &

Repulsive point
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point

_ a2
0< <1 eg xg=4sin %

Nonhyperbolic point

_ _ -2 T
A2 =1, eg xo=4sin" &

Repulsive point

1< Ao,
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point

0< <l eg xo= 4sin® &

Nonhyperbolic point

=1 eg x= 4 sin?

Repulsive point

A2 3
1< A, eg xo=4sin" 37
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

For A» we have the possibilities

Saddle point

0< <l eg xo= 4sin® &

Nonhyperbolic point

=1 eg x= 4 sin?

Repulsive point

A2 3
1< A, eg xo=4sin" 37

All above points [xg, 0] have period 4.
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Existence of interior periodic points

Classification

Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points




Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

addle point

Lower periodic points with period n and 0 < A, < 1 appear for all
n> 4.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

Saddle point
Lower periodic points with period n and 0 < A, < 1 appear for all
n>4.

Nonhyperbolic point
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

Saddle point

Lower periodic points with period n and 0 < A, < 1 appear for all
n> 4.

Nonhyperbolic point

Lower periodic points with period n and A, = 1 appear for
infinitely many n, e.g. n=4-3"-5/ where i >0, j > 0.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

Saddle point

Lower periodic points with period n and 0 < A, < 1 appear for all
n> 4.

Nonhyperbolic point

Lower periodic points with period n and A, = 1 appear for
infinitely many n, e.g. n=4-3"-5/ where i >0, j > 0.

v

Repulsive point
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Classification

Saddle point

Lower periodic points with period n and 0 < A, < 1 appear for all
n> 4.

Nonhyperbolic point

Lower periodic points with period n and A, = 1 appear for
infinitely many n, e.g. n=4-3"-5/ where i >0, j > 0.

| \

Repulsive point

Lower periodic points with period n and 1 < A, appear for all
n>1.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Main result

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same itinerary.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Explicit examples

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same itinerary.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Explicit examples

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same itinerary.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Explicit examples

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same itinerary.

(i) If P=10,0] then Q =[1,2] and W = a.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Explicit examples

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same itinerary.

(i) If P=10,0] then @ =[1,2] and W = a.
(ii) If P = [4sin? Z,0] then Q = [1f§71+% and
W = a3b.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Explicit examples

Let P be a lower saddle fixed point of the map F". Then there is
an interior fixed point Q of F" with the same itinerary.

(i) If P=10,0] then Q =[1,2] and W = a.
(i) If P = [4sin® ,0] then @ = [1— 2,1+ ¥Z| and
W = a3b.
(ii) 1f P = [4sin? &,0] then Q@ = |1, 255 and W = a*52.
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Problem to be solved

Periodic points by numerical results

Lower periodic points

Relationship between lower and interior periodic points

Existence of interior periodic points

Sufficient condition for saddle point

Theorem

Let P = [4 sin2 zf,‘ll,O], where n and k are integers such that
0 < n and

_ V2(2"+1)

T or.oV2nt1/a

Then P is a saddle fixed point of F".

0<k
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Estimates
Estimates Hypotheses
Nonexistence

Notation

Let IntFix(F") be the set of all interior fixed points of the map F"
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Estimates
Estimates Hypotheses
Nonexistence

Notation

Let IntFix(F") be the set of all interior fixed points of the map F"
and IntPer(F, n) be the set all interior n-periodic of the map F.
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Estimates
Estimates Hypotheses
Nonexistence

Estimates

Corollary

For cardinalities of IntFix(F") and IntPer(F, n) we have the
estimates
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Estimates
Estimates Hypotheses
Nonexistence

Estimates

Corollary

For cardinalities of IntFix(F") and IntPer(F, n) we have the
estimates

O # IntFix(F") > 22 . gn—\/20+1/4
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Estimates
Estimates Hypotheses
Nonexistence

Estimates

Corollary

For cardinalities of IntFix(F") and IntPer(F, n) we have the
estimates

Q # IntFix(F") > 22 . pn—V/2n¥1/4
Q # IntPer(F, n) > & <2n—\/m _ 21+g>

™
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Estimates
Estimates Hypotheses

Nonexistence

Estimates

Corollary

For cardinalities of IntFix(F") and IntPer(F, n) we have the
estimates

Q #IntFix(F") > 2\[ 2n—\/2,,_|_71/4
Q@ # IntPer(F,n) > M <2n—\/m_21+g>

© #IntPer(F,n) > (2—¢)"
for 0 < € < 1 and sufficiently large n.
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Estimates
Estimates Hypotheses
Nonexistence

Hypotheses

If P € D is a lower repulsive (nonhyperbolic) fixed point of F",
then there is no interior fixed point of F" with the same itinerary.
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Estimates
Estimates Hypotheses
Nonexistence

Hypotheses

If P € D is a lower repulsive (nonhyperbolic) fixed point of F",
then there is no interior fixed point of F" with the same itinerary.

If P € D is a lower saddle fixed point of F", then there is a unique
interior fixed point of F" with the same itinerary.
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Estimates
Estimates Hypotheses
Nonexistence

Hypotheses

If P € D is a lower repulsive (nonhyperbolic) fixed point of F",
then there is no interior fixed point of F" with the same itinerary.

Hypothesis 2

If P € D is a lower saddle fixed point of F", then there is a unique
interior fixed point of F" with the same itinerary.

v

Hypothesis 3

Iiminfm>0.

n—>00 2”

A\
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Estimates
Estimates Hypotheses
Nonexistence

Nonexistence

Let W = @i b¥1 ... almpkm be an itinerary such that j; > 0, ki > 0

and Z(j, aF k,) = n.
i=1
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Estimates
Estimates Hypotheses
Nonexistence

Nonexistence

Let W = @i b¥1 ... almpkm be an itinerary such that j; > 0, ki > 0

and Z(j, aF k,) =n. If
i=1

then there is no interior fixed point of the map F"
with the itinerary W .
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Let W = @i b¥1 ... almpkm be an itinerary such that j; > 0, ki > 0

m

and Z(J, aF k,') = n.
i=1




Theorem
Let W = @i b¥1 ... almpkm be an itinerary such that j; > 0, ki > 0

and Z(J, aF k,') = n.
i=1

(i) If

m m 4 2\/*
Zki Z |n3 Zjl+m

then there is no interior fixed point of the map F"
with the itinerary W.




Theorem
Let W = @i b¥1 ... almpkm be an itinerary such that j; > 0, ki > 0

and Z(J, aF k,') = n.
i=1

(i) If

m m
In(4 —2v?2)
Sz s MBS,
then there is no interior fixed point of the map F"
with the itinerary W.
(ii) If
32

Sk S-S
25 =032 T 3 i—1J’ n3

then there exists an interior fixed point of the map F"
with the itinerary W.




Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Motivation

o

— fcin2
Take xp = 4sin 5E
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Classification of lower periodic points by denominators
Open problems in number theory

Relation to number theory

Motivation

2 196057
22071 -

Take xp = 4sin? 55 = 4sin

Peter Malicky Dyn:

ics of a Map of a Triangle



Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Motivation

2 196057

_ 2w :
Take xo = 4sin® &z = 4sin So1

The period of [xp, 0] is 20.
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Motivation

Cfein2 T g ein2 196057
Take xo = 4sin® &z = 4sin 5207 -

The period of [xp, 0] is 20.
Fixe an odd integer m.
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Motivation

Take xp = 4sin® & o5 = = 4sin® 129605f.
The period of [xp, 0] is 20.

Fixe an odd integer m.

Let A, be the set of all points of the form 4sin? T where
k<@ T is coprime to m.
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Motivation

Take xp = 4sin® & o5 = = 4sin® 129605f.
The period of [xp, 0] is 20.

Fixe an odd integer m.

Let A, be the set of all points of the form 4sin? T where
k<@ T is coprime to m.

All these points are periodic with the same period.
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Classification of lower periodic points by denominators
Open problems in number theory

Relation to number theory

Main formula

Since
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Main formula

Since )
m—
. km m
sin — = om—1
k=1
we obtain
m—1
2 m—1
5 km . km
H4sm — = H2sm—:m
k=1 k=1
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Main formula

Since .
m—
. km m
sin — = om—1
k=1
we obtain
m—1
2 m—1
5 km . km
H4sm — = H2sm—:m
m
k=1 k=1

We are interested in

m—1
2

.o km
H 4sin® —

k=1
GCD(k,m)=1
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. Open problems in number theor
Relation to number theory F F y

Main formula

Since .
T krm m
sin — = 1
k=1
we obtain
m—1
2 m—1
5 kT . km
H4sm — = H2sm—:m
m
k=1 k=1
We are interested in
m—1 .
2 o km pif m=p', where p is prime

H 4sin® — = i
1 m 1 otherwise
GCD(k,m)=1
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. Open problems in number theor
Relation to number theory F F y

Case m = p', where p is prime

Let m = p', where p is a prime.
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. Open problems in number theor
Relation to number theory F F y

Case m = p', where p is prime

Let m = p', where p is a prime.
If An, is an orbit then corresponding Ao = p > 1.
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Case m = p', where p is prime

Let m = p', where p is a prime.
If A, is an orbit then corresponding A = p > 1. So, this orbit is
repelling.
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Case m = p', where p is prime

Let m = p', where p is a prime.

If A, is an orbit then corresponding A = p > 1. So, this orbit is
repelling.

If A, contains at least two orbits then Ay < 1 appears for some
orbit.
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Case m# p'

If An, is an orbit then corresponding Ao = 1.
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. Open problems in number theor
Relation to number theory F F y

Case m# p'

If An, is an orbit then corresponding Ao = 1.
If A contains at least two orbits then one of the following holds

e )\> =1 for all orbits in Ap,.
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. Open problems in number theor
Relation to number theory F F y

Case m# p'

If An, is an orbit then corresponding Ao = 1.
If A contains at least two orbits then one of the following holds

e )\> =1 for all orbits in Ap,.

e )\ # 1 for all orbits in A, A2 < 1 and A > 1 appear for
some orbits.
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. Open problems in number theor
Relation to number theory F F y

Case m# p'

If An, is an orbit then corresponding Ao = 1.
If A contains at least two orbits then one of the following holds

e )\> =1 for all orbits in Ap,.

e )\ # 1 for all orbits in A, A2 < 1 and A > 1 appear for
some orbits.

e M =1, A» <1and Ay > 1 appear for some orbits.
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Case m# p'

If An, is an orbit then corresponding Ao = 1.
If A contains at least two orbits then one of the following holds

e )\> =1 for all orbits in Ap,.

e )\ # 1 for all orbits in A, A2 < 1 and A > 1 appear for
some orbits.

e M =1, A» <1and Ay > 1 appear for some orbits.
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. Open problems in number theor
Relation to number theory F F y

Case m# p'

If An, is an orbit then corresponding Ao = 1.
If A contains at least two orbits then one of the following holds

e )\> =1 for all orbits in Ap,.

e )\ # 1 for all orbits in A, A2 < 1 and A > 1 appear for
some orbits.

e M =1, A» <1and Ay > 1 appear for some orbits.

The last possibility was not observed.
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The value of period

Let Z*, be the multiplicative group of the ring Z,
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z7,.
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z7,. Denote by ¢(m) = #Z,
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z7,. Denote by ¢(m) = #Z,
and ord(2, m) = #G(2, m).
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z¥,. Denote by ¢(m) = #Z%,
and ord(2, m) = #G(2, m). Note that

ord(2, m) = LCM (ord(2,pi2),ord(2,p£2), . .,ord(2,p£5))
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z¥,. Denote by ¢(m) = #Z%,
and ord(2, m) = #G(2, m). Note that

ord(2, m) = LCM (ord(2,pi2),ord(2,p£2), . .,ord(2,p£5)) for

_oai i i
m=p!-ps...pe.
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z¥,. Denote by ¢(m) = #Z%,
and ord(2, m) = #G(2, m). Note that
ord(2, m) = LCM (ord(2 pi2) ord(2, pi2) .,ord(2, pi5)> for

2 k7T

m= pil 'pg ...~ p5. The period of the point 4sin is
d(2
Or(z’m) if —1¢G(2,m)
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z¥,. Denote by ¢(m) = #Z%,
and ord(2, m) = #G(2, m). Note that

ord(2, m) = LCM (ord(2 pi2) ord(2, pi2) .,ord(2, pi5)> for

m=pil . p2....pk. The period of the point 4sin? kr i
d(2
or(2,m) if —1¢ G(27m)
and

ord(2, m) otherwise .
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z¥,. Denote by ¢(m) = #Z%,
and ord(2, m) = #G(2, m). Note that

ord(2, m) = LCM (ord(2 pi2) ord(2, pi2) .,ord(2, pi5)> for

m=pil . p2....pk. The period of the point 4sin? kr i
d(2
or(2,m) if —1¢ G(27m)
and

ord(2, m) otherwise .

Moreover —1 € G(2, m)
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. Open problems in number theor
Relation to number theory F F y

The value of period

Let Z7, be the multiplicative group of the ring Z,, and G(2, m) be
the group generated by class of 2 in Z¥,. Denote by ¢(m) = #Z%,
and ord(2, m) = #G(2, m). Note that

ord(2, m) = LCM (ord(2 pi2) ord(2, pi2) .,ord(2, pi5)> for

m=pil . p2....pk. The period of the point 4sin? kr i

ord(2, m)

S if —1€G(2,m)

and
ord(2, m) otherwise .

Moreover —1 € G(2, m) if and only if there is & > 0 such that
ord(2,pj'.'j) =2%Q2uj+1)forall j=1,...,s
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Number of orbits

The number of orbits in A, is

p(m) .
(2 if —1€G(2,m)
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Number of orbits

The number of orbits in A, is

p(m) .
(2 if —1€G(2,m)

and
¢(m)

_ "V oth ;
20rd(2, m) otherwise
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z:,-
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any i > 1,
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z*,
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.

e 2 is asquarein Z*;,
p
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.

e 2 is asquarein Z;,-, —1 is not a square
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.
e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.
e 2 is asquarein Z;,-, —1 is not a square and 2 generates the
group of squares in Z;,-.
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.
e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.
e 2 is asquarein Z;,-, —1 is not a square and 2 generates the
group of squares in Z;,-.
(This is possible only for p = —1( mod 8).)
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.
e 2 generates the group Z*,
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.
e 2 is asquarein Z;,-, —1 is not a square and 2 generates the
group of squares in Z;,-.
(This is possible only for p = —1( mod 8).)
For example for p =7,23,47 and any / > 1,
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z*,
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.

e 2 is asquarein Z;,-, —1 is not a square and 2 generates the
group of squares in Z;,-.
(This is possible only for p = —1( mod 8).)
For example for p = 7,23,47 and any i > 1, but not for
p=3land p=127 and any i > 1.
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m = p’

Let m = p', where p is a prime. The set A, is an orbit if and only
if one of the following holds.

e 2 generates the group Z:,-
(This is possible only for p = £3( mod 8).)
For example for p = 3,5,11,13,19,29 and any / > 1, but not
for p=43 and p =109 any / > 1.

e 2 is asquarein Z;,-, —1 is not a square and 2 generates the
group of squares in Z;,-.
(This is possible only for p = —1( mod 8).)
For example for p = 7,23,47 and any i > 1, but not for
p=3land p=127 and any i > 1.

Particularly for p = 1( mod 8) the set A, contains at least two
orbits.

Peter Malicky Dynamics of a Map of a Triangle



Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
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Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,
e the sets Ap,- and Aq,- are orbits,
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,
e the sets Ap,- and Aq,- are orbits,
e p#q(mod 8),
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,

the sets Ap,- and Aq,- are orbits,

p# q( mod 8),
GCD(p—-1,9-1)=2,
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,

the sets Ap,- and Aq,- are orbits,

p # q( mod 8),
GCD(p—-1,9-1)=2,
either i =1 or g — 1 is not divisible by p.
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,

the sets Ap,- and Aq,- are orbits,

p # q( mod 8),
GCD(p—-1,9-1)=2,
either i =1 or g — 1 is not divisible by p.
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,

the sets A, and A, are orbits,
p # q( mod 8),

e GCD(p—1,9—-1) =2,

e either i =1 or g — 1 is not divisible by p.
This is true for m =3/ -5/,3.7/ 5.7/ 31.23/,
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. Open problems in number theor
Relation to number theory F F y

Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,

the sets A, and A, are orbits,
p # q( mod 8),
e GCD(p—1,9—-1) =2,
e either i =1 or g — 1 is not divisible by p.
This is_tru_e form=3".5/,3.7/ 5.7/ 3".23/ but not for
m=3"-7 and i > 2.

Peter Malicky Dynamics of a Map of a Triangle



Classification of lower periodic points by denominators

. Open problems in number theor
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Number of orbits for m # p’

Let m be divisible by at least two primes.
The set A, is an orbit if and only if

e m=p'¢/, where p < q are primes and i,j > 0,

the sets A, and A, are orbits,
p # q( mod 8),
e GCD(p—1,9—-1) =2,
e either i =1 or g — 1 is not divisible by p.
This is_tru_e form=3".5/,3.7/ 5.7/ 3".23/ but not for
m=3"-7 and i > 2.
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Relations between Z;, Z:‘ﬂ and Z;,-

Let p be a prime, a # 0 and / > 1 be integers.
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. Open problems in number theor
Relation to number theory F F y

Relations between Z;, Z:‘ﬂ and Z;,-

Let p be a prime, a # 0 and / > 1 be integers.
e Ifi>j>1and (a mod p') generates the group Z;, then
(a mod p/) generates Z*;,
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. Open problems in number theor
Relation to number theory F F y

Relations between Z;, Z:‘ﬂ and Z;,-

Let p be a prime, a # 0 and / > 1 be integers.
e Ifi>j>1and (a mod p') generates the group Z;, then
(a mod p/) generates Z*;,

e Ifi>j>1and (a mod p’) generates the group of squares in
Z7; then (a mod p/) generates the group of squares in Z*;,
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. Open problems in number theor
Relation to number theory F F y

Relations between Z;, Z:‘ﬂ and Z;,-

Let p be a prime, a # 0 and / > 1 be integers.
e Ifi>j>1and (a mod p') generates the group Z;, then
(a mod p/) generates Z*;,

e Ifi>j>1and (a mod p’) generates the group of squares in
Z7; then (a mod p/) generates the group of squares in Z*;,

e If (a mod p?) generates the group ZZQ then (a mod p')
generates ZZ,,
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Classification of lower periodic points by denominators

. Open problems in number theor
Relation to number theory F F y

Relations between Z;, Z:‘ﬂ and Z;,-

Let p be a prime, a # 0 and / > 1 be integers.
e Ifi>j>1and (a mod p') generates the group Z;, then
(a mod p/) generates Z*;,

e Ifi>j>1and (a mod p’) generates the group of squares in
Z7; then (a mod p/) generates the group of squares in Z*;,

e If (a mod p?) generates the group ZZQ then (a mod p')
generates ZZ,,

e If (a mod p?) generates the group of squares in Z:‘)2 then
(a mod pi) generates the group of squares in ZZ,,
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Relations between Z;, Z:‘ﬂ and Z;,-

e Ifi>j>1and (2 mod p') generates the group Z:;,- then
(2 mod p/) generates Z*,,
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. Open problems in number theor
Relation to number theory F F y

Relations between Z;, Z:‘ﬂ and Z;,-

e Ifi>j>1and (2 mod p') generates the group Z:;,- then
(2 mod p/) generates Z*,,

e If i >j>1and (2 mod p’) generates the group of squares in
Z;,- then (2 mod p’) generates the group of squares in Z*;,
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Relations between Z;, Z:‘ﬂ and Z;,-

e Ifi>j>1and (2 mod p') generates the group Z:;,- then
(2 mod p/) generates Z*,,

e If i >j>1and (2 mod p’) generates the group of squares in
Z;,- then (2 mod p’) generates the group of squares in Z*;,

e If (2 mod p?) generates the group L, then (2 mod p')
generates Z:,-,
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. Open problems in number theor
Relation to number theory F F y

Relations between Z;, Z:‘ﬂ and Z;,-

If i >j>1and (2 mod p’) generates the group Z:;,- then
(2 mod p/) generates Z*;,

If i>j>1and (2 mod pi) generates the group of squares in
Z;,- then (2 mod p’) generates the group of squares in Z*;,

If (2 mod p?) generates the group Z7, then (2 mod p')
generates Z:,-,

If (2 mod p?) generates the group of squares in Z;; then
(2 mod p') generates the group of squares in Z;’;,,
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Relation to number theory

Wieferich primes

If 2 generates Z%, but not Z’;ﬂ,
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Relation to number theory Open problems in number theory

Wieferich primes

If 2 generates Z%, but not Z’;ﬂ, then
2=t =1(mod p?).
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Relation to number theory Open problems in number theory

Wieferich primes

If 2 generates Z%, but not Z’;ﬂ, then
2=t =1(mod p?).
A prime with this property is called a Wieferich prime.
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Relation to number theory Open problems in number theory

Wieferich primes

If 2 generates Z%, but not Z’;ﬂ, then

2=t =1(mod p?).

A prime with this property is called a Wieferich prime.

There are known only two Wieferich primes p = 1093 and 3511.
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Relation to number theory Open problems in number theory

Wieferich primes

If 2 generates Z%, but not Z’;ﬂ, then

2=t =1(mod p?).

A prime with this property is called a Wieferich prime.

There are known only two Wieferich primes p = 1093 and 3511.
The other ones have to be greater than 6.7 - 1013,
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Relation to number theory Open problems in number theory

Wieferich primes
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Wieferich primes

If 2 generates Z%, but not Z’;ﬂ, then

2=t =1(mod p?).

A prime with this property is called a Wieferich prime.

There are known only two Wieferich primes p = 1093 and 3511.
The other ones have to be greater than 6.7 - 1013,

However 2 does not generate Z,, for p = 1093 and 3511.

On the other hand 2 generate the group of squares in Z35;; but

H k
not in Z35112.
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Artin conjecture

The question whether 2 generates Zj, for infinitely primes is a part
the Artin conjecture.
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Classification of lower periodic points by denominators

Relation to number theory Open problems in number theory

Artin conjecture

The question whether 2 generates Zj, for infinitely primes is a part
the Artin conjecture.

It is also interesting whether 2 generates the group of squares in
Zy, for infinitely primes of the form p =8/ — 1.
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A prime p is said to be Sophie Germaine prime
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Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if g=2p+ 1 is
also prime. In such a case g is called a safe prime.

Let p be a Sophie Germain prime and
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Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if g=2p+ 1 is
also prime. In such a case g is called a safe prime.

Let p be a Sophie Germain prime and q = 2p + 1 be the
corresponding safe prime.
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Relation to number theory

Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if g=2p+ 1 is
also prime. In such a case g is called a safe prime.

Theorem

Let p be a Sophie Germain prime and q = 2p + 1 be the
corresponding safe prime. Then Ay is an orbit.
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Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if g=2p+ 1 is
also prime. In such a case g is called a safe prime.

Let p be a Sophie Germain prime and q = 2p + 1 be the
corresponding safe prime. Then Ay is an orbit.

Remark

The question whether there are infinitely many Sophie Germain
primes is open.
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Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if g=2p+ 1 is
also prime. In such a case g is called a safe prime.

Let p be a Sophie Germain prime and q = 2p + 1 be the
corresponding safe prime. Then Ay is an orbit.

Remark

The question whether there are infinitely many Sophie Germain
primes is open. Primes

2,3,5,11, 23,29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233
are Sophie Germaine primes.
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Sophie Germaine primes and safe primes

A prime p is said to be Sophie Germaine prime if g=2p+ 1 is
also prime. In such a case g is called a safe prime.

Let p be a Sophie Germain prime and q = 2p + 1 be the
corresponding safe prime. Then Ay is an orbit.

Remark

The question whether there are infinitely many Sophie Germain
primes is open. Primes

2,3,5,11, 23,29, 41, 53, 83, 89, 113, 131, 173, 179, 191, 233
are Sophie Germaine primes.

The corresponding safe primes are
5,7,11,23,47,59,83,107,167,179, 227,263, 347, 359, 383, 467.
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