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The conjecture

Conjecture (Lovász & Plummer 70’s)

There exists a constant c > 0, such that any n-vertex cubic
bridgeless graph contains at least 2cn perfect matchings.
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Bipartite graphs

Let G be a bipartite cubic bridgeless graph with n vertices.

m(G) ≥ n/2 (Sinkhorn 1969)
m(G) ≥ n/2 + 2 (Minc 1969)
m(G) ≥ 3n/2− 3 (Hartfiel & Crosby 1971)
m(G) ≥ 6 · (4/3)n/2−3 (Voorhoeve 1979)

Theorem (Schrijver 1998)

Every bipartite regular bridgeless graph contains an
exponential number of perfect matchings.
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Planar graphs

Theorem (Chudnovsky & Seymour 2008)

Every planar cubic bridgeless graph with n vertices contains at
least 2n/655978752 perfect matchings.
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General case

Theorem (Edmonds, Lovász & Pulleyblank; Naddef 1982)

Every cubic bridgeless graph with n vertices contains at least
n/4 + 2 perfect matchings.

Theorem (Král’, Sereni & Stiebitz 2008)

Every cubic bridgeless graph with n vertices contains at least
n/2 perfect matchings.

Theorem (Esperet, Král’, Škoda & Škrekovski 2008)

Every cubic bridgeless graph with n vertices contains at least
3n/4− 10 perfect matchings.
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Theorem (Esperet, K. & Král’ 2009)

For any a > 0 there exists a constant b such that every cubic
bridgeless graph with n vertices contains at least an − b perfect
matchings.
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Splitting an edge
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Splitting an edge
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Splitting an edge

me(n) ≥ 4
3 ·me(n − 2).

Theorem (Voorhoeve 1979)

Let G be a bipartite cubic graph with n vertices. Then
m(G) ≥ 6 · (4/3)n/2−3.
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Troubles in the general case
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Troubles in the general case

In general, the number of perfect matchings avoiding a given
edge does not grow exponentially:
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Cyclically 5-edge-connected graphs

c-5-ec

=⇒

c-4-ec c-4-ec

c-4-ec c-3-ec∗

c-k -ec: a cyclically k -edge-connected graph
c-k -ec∗: a cyclically k -edge-connected graph, with no cyclic
k -edge cut containing the forbidden edge e
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Cyclically 5-edge-connected graphs

Lemma

Let G be an n-vertex cyclically 3-edge-connected cubic graph
and e an edge of G that is not contained in any cyclic
3-edge-cut of G. The number of perfect matchings of G that
avoids e is at least n/8.
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Graphs with cyclic 4-edge-cuts
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Graphs with cyclic 4-edge-cuts

=
∑8

i=1 xiyi

If xi ≥ 1 and yi ≥ 1 for some i ∈ I ⊆ {1, 2, . . . , 8}, then

xiyi ≥ xi + yi − 1

and thus ∑
i∈I

xiyi ≥
∑
i∈I

xi +
∑
i∈I

yi − 8.
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Graphs with cyclic 4-edge-cuts

≥ 1 ⇐⇒ ≥ 1 ⇐⇒ ≥ 1
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Graphs with cyclic 4-edge-cuts

Lemma (Esperet, Král’, Škoda & Škrekovski 2008)

Let G be a cyclically 4-edge-connected cubic graph and e and f
two edges of G. G contains no perfect matchings avoiding e
and containing f if and only if the graph G \ {e, f} is bipartite
and the end-vertices of e are in one color class while and the
end-vertices of f are in the other.
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Graphs with cyclic 4-edge-cuts

Lemma

=⇒

c-4-ec c-4-ec c-4-ec c-4-ec

or

c-4-ec c-4-ec c-4-ec
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Graphs with cyclic 4-edge-cuts

A twisted net is either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and u′v ′ to the disjoint union of G
and H, where u, u′ and v , v ′ are vertices of degree less than 3
in G and H, respectively.

L. Esperet, F. Kardoš and D. Král’

Perfect matchings in cubic graphs



Introduction Results

Graphs with cyclic 4-edge-cuts

A twisted net is either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and u′v ′ to the disjoint union of G
and H, where u, u′ and v , v ′ are vertices of degree less than 3
in G and H, respectively.

L. Esperet, F. Kardoš and D. Král’

Perfect matchings in cubic graphs



Introduction Results

Graphs with cyclic 4-edge-cuts

A twisted net is either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and u′v ′ to the disjoint union of G
and H, where u, u′ and v , v ′ are vertices of degree less than 3
in G and H, respectively.

L. Esperet, F. Kardoš and D. Král’

Perfect matchings in cubic graphs



Introduction Results

Graphs with cyclic 4-edge-cuts

A twisted net is either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and u′v ′ to the disjoint union of G
and H, where u, u′ and v , v ′ are vertices of degree less than 3
in G and H, respectively.

L. Esperet, F. Kardoš and D. Král’

Perfect matchings in cubic graphs



Introduction Results

Graphs with cyclic 4-edge-cuts

A twisted net is either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and u′v ′ to the disjoint union of G
and H, where u, u′ and v , v ′ are vertices of degree less than 3
in G and H, respectively.

L. Esperet, F. Kardoš and D. Král’

Perfect matchings in cubic graphs



Introduction Results

Graphs with cyclic 4-edge-cuts

A twisted net is either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and u′v ′ to the disjoint union of G
and H, where u, u′ and v , v ′ are vertices of degree less than 3
in G and H, respectively.

L. Esperet, F. Kardoš and D. Král’

Perfect matchings in cubic graphs



Introduction Results

Graphs with cyclic 3-edge-cuts

−→

If all ≥ 2, we apply induction.

Lemma (Esperet, Král’, Škoda & Škrekovski 2008)

Every cyclically 3-edge-connected cubic graph that is a not a
Klee-graph is double covered.
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Graphs with cyclic 3-edge-cuts

A Klee-graph is either K4, or the graph obtained from a
Klee-graph by replacing a vertex by a triangle.
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Graphs with cyclic 3-edge-cuts

BIG Klee graph =⇒ OK
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Graphs with cyclic 3-edge-cuts

only small Klee graphs
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Graphs with cyclic 3-edge-cuts

only small Klee graphs

=⇒ c-4-ec graph
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Thank you for your attention!
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