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The conjecture

Conjecture (Lovasz & Plummer 70’s)

There exists a constant ¢ > 0, such that any n-vertex cubic
bridgeless graph contains at least 2°" perfect matchings.
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Bipartite graphs

Let G be a bipartite cubic bridgeless graph with n vertices.
m m(G) > n/2 (Sinkhorn 1969)
m(G) > n/2 + 2 (Minc 1969)
m(G) > 3n/2 — 3 (Hartfiel & Crosby 1971)
m(G) > 6 - (4/3)"/2=3 (Voorhoeve 1979)
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Bipartite graphs

Let G be a bipartite cubic bridgeless graph with n vertices.
m m(G) > n/2 (Sinkhorn 1969)
m(G) > n/2 + 2 (Minc 1969)
m(G) > 3n/2 — 3 (Hartfiel & Crosby 1971)
m(G) > 6 - (4/3)"/2=3 (Voorhoeve 1979)

Theorem (Schrijver 1998)

Every bipartite regular bridgeless graph contains an
exponential number of perfect matchings.
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Planar graphs

Theorem (Chudnovsky & Seymour 2008)

Every planar cubic bridgeless graph with n vertices contains at
least 21/655978752 perfact matchings.
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General case

Theorem (Edmonds, Lovasz & Pulleyblank; Naddef 1982)

Every cubic bridgeless graph with n vertices contains at least
n/4 + 2 perfect matchings.

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Introduction

[ ]
General case

Theorem (Edmonds, Lovasz & Pulleyblank; Naddef 1982)

Every cubic bridgeless graph with n vertices contains at least
n/4 + 2 perfect matchings.

Theorem (Kral, Sereni & Stiebitz 2008)

Every cubic bridgeless graph with n vertices contains at least
n/2 perfect matchings.
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°
General case

Theorem (Edmonds, Lovasz & Pulleyblank; Naddef 1982)

Every cubic bridgeless graph with n vertices contains at least
n/4 + 2 perfect matchings.

Theorem (Kral, Sereni & Stiebitz 2008)

Every cubic bridgeless graph with n vertices contains at least
n/2 perfect matchings.

Theorem (Esperet, Kral, Skoda & Skrekovski 2008)

Every cubic bridgeless graph with n vertices contains at least
3n/4 — 10 perfect matchings.
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Theorem (Esperet, K. & Kral 2009)

For any a > 0 there exists a constant b such that every cubic
bridgeless graph with n vertices contains at least an — b perfect
matchings.
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Splitting an edge

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results
[e] Ielele]e]e)

Splitting an edge

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results
[e]e] lele]e]e)

Splitting an edge

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results
[e]e]e] lelele)

Splitting an edge

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results
[e]e]e]e] Tele)

Splitting an edge

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results
0000000

Splitting an edge

L. Esperet, F.

Perfect matchings in cubic graph



Results
0O00000e

Splitting an edge

L. Esperet, F.

Perfect matchings in cubic graph



Results
0000000

Splitting an edge

3x —

L. Esperet, F.

Perfect matchings in cubic graph



Results
0000000

Splitting an edge

me(n) >

Wl

-me(n — 2).

Theorem (Voorhoeve 1979)

Let G be a bipartite cubic graph with n vertices. Then
m(G) > 6 - (4/3)"/?2-3,
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Troubles in the general case

In general, the number of perfect matchings avoiding a given
edge does not grow exponentially:
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Cyclically 5-edge-connected graphs

c-4-ec c-4-ec
— c-4-ec c-3-ec*

c-5-ec _wt

c-k-ec: a cyclically k-edge-connected graph
c-k-ec*: a cyclically k-edge-connected graph, with no cyclic
k-edge cut containing the forbidden edge e
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Cyclically 5-edge-connected graphs

Lemma

Let G be an n-vertex cyclically 3-edge-connected cubic graph
and e an edge of G that is not contained in any cyclic
3-edge-cut of G. The number of perfect matchings of G that
avoids e is at least n/8.

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results

@®000000

GIEEELED

L. Esperet, F.

Perfect matchings in cubic graph



Results

O®00000

Graphs with cyclic 4-edge-cuts
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Graphs with cyclic 4-edge-cuts

= 2?21 XiYi

If ; >1and y; > 1forsomeieclC {1,2,...,8},then
Xiyi = Xi+ yi — 1
and thus

ZX/’}’/ > ZXi+ZYI—8-

iel iel iel
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Graphs with cyclic 4-edge-cuts

Lemma (Esperet, Kral, Skoda & Skrekovski 2008)

Let G be a cyclically 4-edge-connected cubic graph and e and f
two edges of G. G contains no perfect matchings avoiding e
and containing f if and only if the graph G\ {e, f} is bipartite
and the end-vertices of e are in one color class while and the
end-vertices of f are in the other.
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Graphs with cyclic 4-edge-cuts

c-4-ec c-4-ec c-4-ec c-4-ec
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c-4-ec c-4-ec c-4-ec
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Graphs with cyclic 4-edge-cuts

A twisted netis either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and vV’ to the disjoint union of G
and H, where u, v’ and v, v’ are vertices of degree less than 3
in G and H, respectively.
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Graphs with cyclic 4-edge-cuts

A twisted netis either a 4-cycle, or the graph inductively
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Graphs with cyclic 4-edge-cuts

A twisted netis either a 4-cycle, or the graph inductively
obtained from a twisted net G and a twisted net or a single
edge H by adding edges uv and vV’ to the disjoint union of G
and H, where u, v’ and v, v’ are vertices of degree less than 3
in G and H, respectively.
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Graphs with cyclic 3-edge-cuts

If all > 2, we apply induction.

Lemma (Esperet, Kral, Skoda & Skrekovski 2008)

Every cyclically 3-edge-connected cubic graph that is a not a
Klee-graph is double covered.

L. Esperet, F. Kardo$ and D. Kral

Perfect matchings in cubic graphs



Results

0O®00000

Graphs with cyclic 3-edge-cuts

A Klee-graph is either Ky, or the graph obtained from a
Klee-graph by replacing a vertex by a triangle.
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Graphs with cyclic 3-edge-cuts

BIG Klee graph @ — OK
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only small Klee graphs
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Graphs with cyclic 3-edge-cuts

only small Klee graphs

= c-4-ec graph
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Thank you for your attention!
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