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WSN

The beginning of the story

Our research is motivated by real construction of wireless sensor
networks based on CDMA sensors.
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WSN

Wireless sensor networks (WSN)

WSN is a special type of ad-hoc wireless networks such that its nodes
are devices with embedded

microcontroller,
sensor,
FM radio and
power source.
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WSN

Requirements for WSN

From practical point of view, there is a need for WSN with
low message latency,
real time reaction,
high message delivery reliability,
high robustness,
high security.
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Security in WSN

Security aspects of WSN

In general, a standard sensor device is not considered as
tamper-resistant and due to increasing costs it is not supposed to
make all devices of a sensor network tamper-proof.

Hence, the design of new protocols has become a challenge for
security research, as it is necessary to combine the properties of
cryptographic primitives and the network topologies.
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1st Problem: Semi-matching
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Building WSN

BS

1 Building
reachability graph

2 Building BFS tree,
establishing
connections

3 Establishing
secure
connections

4 Secure
communication
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G. Semanišin (Košice, Slovakia) 2 problems CEX CaKS 062010 7 / 54



Building WSN

BS

1 Building
reachability graph

2 Building BFS tree,
establishing
connections

3 Establishing
secure
connections

4 Secure
communication
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WSN based on CDMA technology

WSN based on CDMA technology
consists of node that are able to communicate each other with
respect to their physical limitations and mutual distance,
the sink of the network (base station) has relatively large
computational capabilities and energy sources,
the number of hops from a given node to sink must be as small as
possible,
the number of communication channels available at the sensors is
limited (say 16).
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Efficiency of the algorithms for network building

From practical point of view it is not important how efficient are the
algorithms used for establishing communication channels (providing
that the algorithms are “good” enough) because

the time of creating WSN very small with respect to time of
operation,
the operations performed at the nodes take more time than the
transmission.

!!! BUT !!!

The time spent during building WSN is crucial for establishing secure
WSN.
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Graph theoretical approach

The limited number of sensor channels leads to the problem of finding
BSF-tree with bounded degree.

Bad news
The problem of finding spanning tree with bounded degree is
NP-complete.

Good news
We can restrict our consideration to a bipartite graph that is formed by
two layers in BSF-tree.
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Preliminaries

Semi-matching

Given a positive integer k and a bipartite graph G = (U ∪ V ,E) with n
vertices and m edges.

Definition
A k − cover of U in G is a set M ⊆ E such that each vertex from U
has at least k incident edges from M.
If the vertices from U are incident exactly to k -edges from M then we
say that U is a k -semi-matching. If k = 1 then we simply say
semi-matching.

U

V

M
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Preliminaries

Load balancing problem

Load balancing problem
If U is a set of tasks and V is a set of machines, one might want to
assign every task to a machine.

To satisfy this condition, more than one task might be assigned to a
single machine, i.e. more than one vertex in U is assigned to some
vertex in V . Thus, the set of edges corresponding to the assignment in
this case is a semi-matching.
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Preliminaries

Load balancing problem

N. J. A. Harvey, R. E. Ladner, L. Lovász, and T. Tamir consider several
goals to optimize:

to minimize the makespan (the maximal number of tasks assigned
to any given machine) of the schedule,
to minimize the average completion time of the tasks (flow time),
to maximize the fairness of the assignment from the machines
point of view, i.e. to minimize the variance of the loads on the
machine.
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Preliminaries

Load balancing problem (continued)

Harvey et al. showed that the optimal semi-matching minimizes
simultaneously

the maximal number of tasks assigned to a machine,
the flow time,
the variance of loads.

Algorithms
The first proposed algorithm has complexity O(mn).
The second algorithm has upper bound for the complexity
O(min(n3/2,mn)m).
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Preliminaries

Lexicographically minimum semi-matching

Let G = (U,V ,E) be a bipartite graph, F ⊆ E and X ⊆ V . Let dF (X )
be the sequence d1 ≥ d2 ≥ · · · ≥ d|X | denoting the degrees of the
vertices of V in G〈F 〉 respectively.

Theorem (D. Bokal, B. Brešar, J. Jerebic, 2009)
There exist an algorithm with running time O(mn) that finds a
semi-matching M of U in a bipartite graph G(U,V ,E) with
lexicographically minimal sequence dM(V ) .

The algorithm
generalises Hungarian method,
can work on-line as well.
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Preliminaries

Bounded degree semi-matching

Given a positive integer d and a bipartite graph G = (U ∪ V ,E) with n
vertices and m edges.

Definition
A bounded-degree semi-matching on G is a set of edges M ⊆ E such
that

each vertex in U is incident to exactly one edge in M and
every vertex from V is incident to at most d edges of G.
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Results

Bounded-degree semi-matching algorithm

Algorithm 1: degree semimatching(G, k )
Input: G = (A,B,E) a bipartite graph and a positive integer k . ;
Output: 1-semimatching M, M ⊆ E , dM(v) ≤ k for every vertex v ∈ A ;
forall the u ∈ A do

capacity(u) = k ;
forall the u ∈ B do

capacity(u) = 1;
M = ∅;
loop 2

√
N times do

forall the u ∈ B, capacity(u) > 0 do
Add u to L0;
indegree(u) = 1;

Layer Construction(0)
return M;
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Results

Bounded-degree semi-matching algorithm

Procedure Layer Construction(i)
repeat

forall the u ∈ Li do
forall the v adjacent to u using an unmatched edge do

if v is not from an earlier layer then
add v to Li+1; indegree(v) = indegree(v) + 1;

if any of the vertex in Li+1 is a free vertex then
Delete all matched vertices from Li+1; t = i + 1;
AugmentPath();

else
forall the u ∈ Li+1 do

for v adjacent to u using a matched edge do
if v is not from an earlier layer then

add v to Li+2; indegree(v) = indegree(v) + 1;
i = i + 2;

until all vertices have been classified or AugmentPath() was called;
G. Semanišin (Košice, Slovakia) 2 problems CEX CaKS 062010 18 / 54



Results

Augmenting path procedure

Procedure AugmentPath
while there is a vertex u in Lt , capacity(u) > 0 do

Trace backwards from u to a free vertex in L0 to obtain an
augmenting path P;
If no such P was found, erase u from Lt and continue with a next
vertex;
forall the v ∈ P do

indegree(v) = indegree(v)− 1
Place all vertices of P with indegree = 0 into deletion queue Q;
Decrease capacity for the first and last vertex of P;
while Q is non-empty do

remove a vertex v ∈ Q from the queue Q;
foreach edge (v ,w), such that w is in the layer after u do

indegree(w) = indegree(w)− 1;
if indegree(w) = 0 then

Place w into Q;
Increase matching M along P;G. Semanišin (Košice, Slovakia) 2 problems CEX CaKS 062010 19 / 54



Results

How the algorithm works

L0

L1

L2

L3

1 Put all unmatched vertices
from V to L0

2 Scan unmatched edges from
L0 and create L1

3 Scan matched edges from L1
and create L2.

4 Scan unmatched edges from
L2 and create L3.

5 ...
6 Find all vertex-disjoint

augmenting paths and
improve semi-matching .
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Results

The complexity of the algorithm

Lemma
The length of the shortest augmenting path increases in each phase.

Lemma
Let M be a semi-matching that is not maximum. Let M∗ be a maximum
semi-matching. Let |M∗| − |M| = k. Then there are k vertex-disjoint
augmenting paths in M∗ ⊕M.

Theorem (F. Galčı́k, J. Katrenič, G.S., 2009)
There exists a deterministic algorithm that find bounded-degree
semi-matching in a bipartite graph G with n vertices and m edges in
O(
√

nm) running time.
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Results

The comparison with the previous results

Theorem (F. Galčı́k, J. Katrenič, G.S., 2009)
There exists a deterministic algorithm that find bounded-degree
semi-matching in a bipartite graph G with n vertices and m edges in
O(
√

nm) running time.

This provides an improvement of the efficiency of the algorithms
designed by Bokal et al. and Harvey et al. - both they need running
time O(mn).

The algorithm is based on the idea presented by Hopcroft and Karp.
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Open problems and challenges

A new challenge

Theorem (M. Mucha and P. Sankowski, 2004)
There an algorithm that solves the Matching Problem in bipartite
graphs with running time O(nω), where ω is the exponent of the best
known matrix multiplication algorithm.

Currently ω < 2.38.

We believe that the Gaussian Elimination approach can be utilized for
the Bounded-degree semi-matching Problem as well.
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Open problems and challenges

Not sufficiently answered questions

Modification of BSF-tree
How to modify the communication tree if we cannot find any
solution of bounded-degree semi-matching problem?

Rearranging of the communication topology
How we have to change the communication tree in a case of
sensor failure?

Improving the reliability of the network
How we can improve the reliability of the communication network
by a duplication of established communication channels?
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Open problems and challenges

Extensions

Definition
Let G = (U,V ,E) be a bipartite graph. Let f : U → N and g : V → N
be mappings. We say that M is a (f ,g)-cover of G if

degM(u) ≤ f (u) for each vertex u ∈ U and
degM(v) ≥ g(v) for each vertex v ∈ V .

The function f provides a limitation for degree of the vertices in the first
layer, while g is the need for the vertices in the second layer.

Obviously, the (f ,g)-cover is a generalization of bounded-degree
semi-matching (just take constant functions f (x) = d and g(x) = 1.
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2nd Problem: Path Security Number
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A communication protocol for WSN

One of the protocol for ensuring data integrity communication in
WSN is called Canvas scheme. M. Novotný proposed a protocol for
protecting data integrity of the message witnessed by k previous
hops in the routing.

Main idea of the protocol
The protocol is based on the fact that each node v shares keys with
nodes that have distance at most k from v . Moreover, the node v
knows information about the local topology of the network up to the
distance k .

In such a way the node v can check the validity of a path of length k ,
ending in v . The k -generalized Canvas scheme guarantees data
integrity under the assumption that each path of length k − 1 contains
a node that is not captured. This can be ensured by using a set of
so-called protected sensors that are resistant against the attacks of a
potential intruder.

G. Semanišin (Košice, Slovakia) 2 problems CEX CaKS 062010 27 / 54



Path Security Number of a Graph

Path Security Number of a Graph

Definition
Let G be a graph and let k ≥ 2 be an integer. A subset of vertices
S ⊆ V (G) is called a k -path security set if every path of order k in G
contains at least one vertex from S.
The k -path security number ψk (G) is defined as follows:

ψk (G) = min {|S| : S is a k -path security set} .

ψ4(G) =?
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Path Security Number of a Graph

PSN - another formulation

Definition
Given a graph G and a path k . What is the minimum number of
vertices that we have to colour so that the non-coloured vertices
form a Pk -free set?

Character of the problem
related to generalised domination
related to generalised colouring (partition according to
prescribed rules)
related to vertex cover (set cover)
. . .
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Path Security Number of a Graph

(Partially) related invariant

Definition (F. Bullock, M. Frick, . . . )
Given a graph G and a constant k . The k -path chromatic number is
the minimum number of colours that are necessary for colouring the
vertices of G in such a way that each colour class forms a Pk -free set.

Proposition
If the k -path chromatic number of a graph is two then

ψk (G) ≤ |V (G)|/2.
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Path Security Number of a Graph

Basic properties of PSN

Proposition
Let G be a graph.

If 2 ≤ k1 ≤ k2 then ψk2(G) ≤ ψk1(G).
(Heredity) If 2 ≤ k and H is a subgraph of G then ψk (H) ≤ ψk (G).
(Additivity) If 2 ≤ k then
ψk (G) = max{ψk (G∗) : G∗ is a component of G}.
(Minimum Vertex Cover) ψ2(G) = β(G).
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Path Security Number of a Graph

PSN for certain classes of graphs

Proposition
Let k ≥ 2 and n ≥ k be positive integers. Then

ψk (Pn) =
⌊n

k

⌋
;

ψk (Cn) =
⌈n

k

⌉
;

ψk (Wn) = 1 +
⌈n

k

⌉
;

ψk (Kn) = n − k + 1;
ψk (H2n+1) = n

k−2 + 1;

ψk (Fn) = 1 +
⌊n

k

⌋
.
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Path Security Number of a Graph

Special classes of graphs - ψ3 for planar graphs is
at least 2

3n
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Complexity of k -PSN

Computational complexity

k -Path Security Problem (k -PSP)
INSTANCE: Graph G and a positive integer t .
QUESTION: Is there a k -path security set S for G of size at most t?

It is not very surprising that

Theorem
For any fixed integer k ≥ 2 the k-Path Security Problem is NPC.
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Complexity of k -PSN

Approximation of k -PSN

Proposition
It is NP-hard to approximate k-PSP, for k > 2, within a factor of 1.3606,
unless P 6= NP.

On the other hand:
For k -PCP we can construct an approximation algorithm in the
following way: Find a path on k vertices, put its k vertices into the
constructed set and remove them from the graph.
Since at least one of these k vertices belongs to an optimal solution,
this provides a k -approximation algorithm for k -PSP.
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Complexity of k -PSN

Approximation of k -PSN (2)

By an application of Brach and Bounds approach we can obtain:

Proposition

The value of ψ3 can be computed in time O(1.749)|V (G)|.

The following provides an improvement of brute-force k -approximation
algorithm:

Proposition
There is a randomized polynomial approximation algorithm for ψ3 with
expected approximation ratio 2.25.
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Trees

Properly rooted subtree

Definition
A properly rooted subtree is a subtree rooted in a vertex v satisfying
the following properties:

1 Tv does contain a path on k vertices;
2 Tv r v does not contain a path on k vertices.

The following result is important for the designed algorithm:

Lemma

If Tu is a tree containing a path on k vertices, then Tu contains at least
one properly rooted subtree.
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Trees

An algorithm for k -PSN for trees

Algorithm 2: PSN Tree(T , k)

Input: A tree T on n vertices and a positive integer k , k ≥ 2;
Output: k -path security set S, S ⊆ V (T );
Take an arbitrary vertex u ∈ T and construct a rooted tree Tu from T ;
S := ∅;
while Tu contains a properly rooted subtree Tv do

S := S ∪ {v};
Tu := Tu r Tv ;

return S;

Theorem
Let T be a tree of order n and k a positive integer. The algorithm
PSN Tree(T , k) returns an optimal solution for k-PSP.
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Trees

Linear algorithm

Algorithm 3: Linear PSN Tree(T , k)

Take an arbitrary vertex u ∈ T and construct a rooted tree Tu from T ;
Create a sequence v1, v2, . . . , vn = u of vertices of T in decreasing
order with respect to their depth (distance from u in Tu);
S := ∅;
for i := 1 to n do

D := children of vi in Tu;
x := 1stmaxd∈Dheight(Td );
y := 2ndmaxd∈Dheight(Td );
if x + y + 1 ≥ k then

S := S ∪ vi ;
height(Tvi ) := 0;

else
height(Tvi ) := x + 1;

return S;
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Trees

k -PSN for trees

Theorem
Let T be a tree and k ≥ 2 be a positive integer. The algorithm
PSN Tree(T , k) returns a k-path security set of T of size at most 1

k n.

Theorem
Let T be a tree and k be a positive integer. The algorithm
PSN Tree(T , k) returns an optimal solution in linear time and space.
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Outerplanar graphs

Outerplanar graphs

Theorem
Let G be an outerplanar graph of order n. Then ψ3(G) ≤ n

2 .

Theorem

There is an algorithm to compute 3-path security number for any
outerplanar graph G in polynomial time.
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Outerplanar graphs

The bound n
2 for outerplanar graphs is the best

possible.
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Sparse graphs

Vertex decomposition according to ∆(G)

Theorem (Lovász)
If s and t are non-negative integers, and if G is a graph with maximum
degree s + t + 1, then the vertex set of G can be partitioned into two
sets which induce subgraphs of maximum degree at most s and t,
respectively.

The following is a straightforward generalisation of the previous result
for k colours.

Theorem (Cowen and Jesurum)
For any graph G of maximum degree ∆, the vertex set of G can be
partitioned into k sets which induce subgraphs of maximum degree at
most ∆

k . Moreover, this can be computed in running time O(∆|E(G)|).
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Sparse graphs

Graphs with bounded maximum degree

Lemma
Let G be a graph of maximum degree ∆. Then

ψ3(G) ≤
d∆−1

2 e
d∆+1

2 e
|V (G)|.

By another technique we can obtain the following:

Lemma

Let G be a graph. For each k > 2, ψk (G) ≤ 2|E(G)|
k+1 .
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Sparse graphs

The best possible bound for ψ3 for graphs with
maximum degree at most 3 is n

2

ψ3(G) = 6 = |V (G)|
2
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Sparse graphs

Sparse graphs

Algorithm 4: SPARSE3(G)

Input: A graph G on n vertices;
Output: 3-path security set H, H ⊆ V (G);
H := ∅;
while G contains any vertex v of degree at least 4 do

H := H ∪ {v};
Remove from G the vertex v and all edges incident with v ;

H := H ∪ Solve Cubic(G);
return H;

Theorem
Let G be a graph having n vertices and m edges. Then the
SPARSE3(G) algorithm returns a solution H of size at most 2n+m

6 .
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Sparse graphs

Ψ3 for sparse graphs

As a corollary of the previous result we have:

Corollary
Let G be a graph on n vertices and m edges. Then

ψ3(G) ≤ 2n + m
6

.

The result is sharp because:

Theorem
Let a,b are integers such that b ≤ a ≤ 2b. Then there is a graph on n
vertices and m edges such that m

n = a
b and

ψ3(G) ≥ 2n + m
6

.
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Regular graphs

Hypercubes - example

ψ4(Q3) =?
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Regular graphs

Hypercubes - example

ψ4(Q3) = 3
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Regular graphs

Hypercubes of specific order

Theorem
Let G be a graph. Then

ψ3(Q2) = 2n−1.
ψ4(Q2) = 1.
ψ4(Q3) = 3.
ψ4(Q4) = 6.
ψ4(Q5) = 14.
ψ4(Qn) =? for n ≥ 6.
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Regular graphs

Regular graphs

Theorem (Erdős and Gallai)

If G is a graph with n vertices, and it does not contain a path of order k
then it cannot have more than n(k−2)

2 edges. Moreover, the bound is
achieved when the graph consists of disjoint complete graphs on k − 1
vertices.

Theorem
Let k ≥ 2 and d ≥ 1 be positive integers. Then for any graph G with
δ(G) ≥ d the following holds:

ψk (G) ≥ d − k + 2
2d − k + 2

|V (G)|.

The special examples are d-regular graphs.
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Regular graphs

Direct consequences

Corollary

If G is a cubic graph then ψk (G) ≥ 5−k
8−k .

Corollary
Let k ≥ 2 be a fixed positive integer. Then for any bipartite d-regular
graph G

lim
n→∞

ψk (G) =
1
2
|V (G)|.

In particular, if Qn is a hypercube then limn→∞ ψk (Qn) = 2n−1, and for
complete bipartite graphs we have limn→∞ ψk (Kn,n) = n.
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Caro-Wei type results

Another bounds for ψ3

For a general k we can prove:

Theorem
For any graph G of order n the following holds:

Ψk (G) ≤ n − k − 1
k

∑
v∈G

2
1 + dG(v)

For a particular case we have an alternative result:

Theorem (Göring, Harant, Rautenbach, Schiermeyer, 2009)
Let G be a graph of order n. Then

ψ3(G) ≤ n−
∑

u∈V (G)

1
1 + d(u)

−
∑

uv∈E(G)

2
|N[u] ∪ N[v ]|(|N[u] ∪ N[v ]| − 1)

.
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Cartesian products

A general characterisation

For k = 2 Vizing observed already that

α(G�H) ≤ min{α(G) |V (H)| , α(H) |V (G)|}.

We are able to prove a generalisation of the following form:

Theorem
Let G,H be arbitrary graphs. Then

ψk (G�H) = max{ψk (G) · |V (H)|, |V (G)| · ψk (H)}.

if and only if H → Ψk (G) or G→ Ψk (H).

G. Semanišin (Košice, Slovakia) 2 problems CEX CaKS 062010 53 / 54



Thanks

Thank you for your attention

Gabriel Semanišin
gabriel.semanisin@upjs.sk
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