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Introduction

• second half of the last century: a development and a growth
of the meaning of the concepts

• information
• transmission of information

• automaton is a system, which accepts signals from its
environment and according to the signals it changes its
internal state and transmits signals to the environment

• avoid too complicated automata with various special
properties

• give a more general approach

• abstraction
• generalize the concept
• apply scientific exact mathematical tools
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Automata

A Mealy-type automaton is a system A = (A,X ,Y , δ, λ), where
A,X ,Y are nonempty sets, δ : A× X → A and λ : A× X → Y are
functions defined on A× X . Then A is called a set of (internal)
states, X is called a set of inputs and Y a set of outputs. The
function δ is said to be a transition function (or a next state
function) and λ is an output function.

WORK:

(1) A is in a state a ∈ A

(2) input x ∈ X is applied to a

(3) A goes into a state δ(a, x) ∈ A

(4) by transition, A sends out an output λ(a, x) ∈ Y
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Automata

• Moore-type automaton: a Mealy-type automaton with

δ(a, x) = δ(a′, x ′) =⇒ λ(a, x) = λ(a′, x ′)∀ a, a′ ∈ A, x , x ′ ∈ X

µ with λ(a, x) = µ(δ(a, x)) is a sign function of A
• automaton without outputs: a Moore-type automaton A

such that Y = A and δ(a, x) = λ(a, x) for each a ∈ A, x ∈ X ;
denote

A = (A,X , δ)

• autonomous automaton: a Moore-type automaton without
outputs and such that X is a one-element set
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Automata

• finite Mealy-type automaton A = (A,X ,Y , δ, λ)

• To present it - make a table: transition-output table

• rows indicated by inputs
• columns indicated by states
• elements of the matrix inside are vectors (δ(a, x), λ(a, x))

• finite Moore-type automaton

• rows indicated by inputs
• columns indicated by states
• elements of the matrix inside are δ(a, x)
• above the column indicated by a ∈ A, the sign µ(a)

• finite Moore-type automaton without outputs:
transition-output table is reduced to a transition table
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Automata

• F.Gécseg, I.Peák:

”The difference between the working of Mealy- and Moore-type
automata can be interpreted as follows: the output of a
Mealy-type automaton occurs while the automaton is going to the
next state, and the output of a Moore-type automaton occurs
after the automaton has gone into a next state and the output is
the sign of this new state. On the other hand, an automaton
without outputs behaves as a closed box: for an input sign it
reacts by changing its internal state only. As will be seen later,
from the point of view of the algebraic theory, the concept of
the Moore-type automaton is merely an apparent specialization of
that of the Mealy-type automaton. Furthermore, it should be
mentioned that in many cases we may confine ourselves to
automata without outputs.”



Monounary algebras

monounary algebra (A, f ): A - nonempty set, f - mapping of A
into A

• connected: ∀ x , y ∈ A ∃ n,m ∈ N ∪ {0} such that

f n(x) = f m(y)

• connected component of (A, f ): maximal connected
subalgebra

• c ∈ A is cyclic if f k(c) = c for some k ∈ N
• the set of all cyclic elements of some connected component of
(A, f ) is a cycle of (A, f )
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Automata without outputs and unary algebras

• A = (A,X , δ) be a Moore-type automaton without
outputs

• for x ∈ X define a unary operation fx :

fx(a) = δ(a, x) for each a ∈ A

F = {fx : x ∈ X}

• (A,F ) is a unary algebra; denote it u(A)

• A = (A, {gj : j ∈ J}) be a unary algebra
• for a ∈ A, j ∈ J define

δ(a, j) = gj(a)

• (A, J, δ) is a Moore-type automaton without outputs;
denote it M(A)
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Automata without outputs and unary algebras

• correspondence between the class of all Moore-type automata
without outputs and the class of all unary algebras

Theorem
(i) If A is a Moore-type automaton without outputs, then u(A) is

a unary algebra and M(u(A)) ∼= A;
(ii) if A is a unary algebra, then M(A) is a Moore-type automaton

without outputs and u(M(A)) ∼= A.

• correspondence between the class of all autonomous automata
and the class of all monounary algebras

Theorem
(i’) If A is an autonomous automaton, then u(A) is a monounary

algebra and M(u(A)) ∼= A;
(ii’) if A is a monounary algebra, then M(A) is an autonomous

automaton and u(M(A)) ∼= A.
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Monounary algebras imply other algebras: Cardinality

• Investigate questions, in which some assertion or construction
is shown for algebras of several types, and by the proof there
is applied a sooner shown assertion for monounary algebras

• How many algebras of type F there exist on the set A, i.e.,
how many possibilities we have to choose values of operations
on A, if

• A - set of cardinality m
• F = {fj : j ∈ J} - a set of operation symbols
• ar(f ) ∈ N ∪ {0} - arity of f ∈ F
• not all f ∈ F are nullary
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Monounary algebras imply other algebras: Cardinality

• For k ∈ N ∪ {0} let nk be the number of k-ary operation
symbols of F .

Lemma
The number of operations of arity k over A is equal to mm

k
.

Lemma
There exist m

∑
k∈N∪{0} nkm

k
of algebras over A of type F .

Lemma
If m is infinite and p =

∑
k∈N nk , then there exist mn0 .2mp of

algebras over A of type F .

• Thus this is an upper bound for the number of
non-isomorphic algebras of the form (A,F ).
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Monounary algebras imply other algebras: Cardinality

• How many non-isomorphic monounary algebras on an
n-element set?

•
n = 1 =⇒ 1

•
n = 2 =⇒ 3

•
n = 3 =⇒ 7

•
n = 4 =⇒ 18

•
n = 5 =⇒ 37
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Monounary algebras imply other algebras: Cardinality

S. D. Comer, J. J. LeTourneau, 1969:

Theorem
For every infinite cardinal m there exist 2m pairwise non-isomorphic
m-element algebras with trivial automorphism groups.

Theorem
If m is infinite, then on A there exist mn0 .2mp pairwise
non-isomorphic algebras with trivial automorphism groups.

Proof.
∃ j0 ∈ J with k = ar(fj0) > 0. By the above theorem ∃ 2m pairwise
non-isomorphic algebras (A, gi ), i ∈ I with trivial automorphism
groups ( gi of arity k). Take all algebras (A,F ) such that fj0 = gi
for some i ∈ I . Each fj can be chosen in m ways if ar(fj) = 0, and
in 2m ways if ar(fj) > 0. The number of distinct obtained
structures is mn0 .2mp. They have trivial automorphism groups,
they are non-isomorphic.
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Monounary algebras imply other algebras: Homomorphisms

• O. Borůvka: How to find all matrices commuting with a given
matrix?

• How to find all linear transformations of an n-dimensional
vector space that commute with a given linear
transformation?

• Neglecting the linear structure of the vector space and of
linear transformations: make a construction providing
exactly all homomorphisms of one monounary algebra
into another one.
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Monounary algebras imply other algebras: Homomorphisms

• Classical result of M. Novotný which resolves this problem:

• Introduced the notion of a monounary algebra which is
admissible to a given connected monounary algebra. Further,
if (A, f ) and (B, g) are monounary algebras, conditions under
which there exists a homomorphism of (A, f ) to (B, g) were
found and all homomorphisms (A, f ) to (B, g) were
constructively described.

• For connected monounary algebras, a homomorphism of (A, f )
to (B, g) exists if and only if (B, g) is admissible to (A, f ).
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Monounary algebras imply other algebras: Homomorphisms

• The acquaintance of the mentioned construction for
monounary algebras can be used for arbitrary algebraic
structures. To a given algebraic structure, a monounary
algebra is assigned. Then instead of looking for
homomorphisms between algebraic structures we can look
for homomorphisms of the corresponding algebras.

• Illustration on groupoids:
• given G = (G , ◦)
• assigned monounary algebra un(G) = (G × G , f ), if

f ((x , y)) = (y , x ◦ y) for any (x , y) ∈ G × G

• G ,H - sets, ϕ : G → H, define ϕ× ϕ = ψ : G × G → H × H
with ψ((x , y)) = (ϕ(x), ϕ(y)) ∀(x , y) ∈ G × G

• ψ : G × G → H × H will be called decomposable if there is
ϕ : G → H such that ψ = ϕ× ϕ
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(3) Test all the constructed homomorphisms and reject all that
are not decomposable.

(4) For any decomposable homomorphism ψ of (G × G , f ) into
(H × H, g) construct ϕ such that ψ = ϕ× ϕ.

Then ϕ is a homomorphism of (G , ◦)) into (H, ∗) and any
homomorphism of (G , ◦)) into (H, ∗) can be constructed in this
way.
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• retracts investigated in many areas of mathematics:
topological spaces, later algebraic structures as groups,
lattices, posets, etc.

• A substructure B of a structure A is said to be a retract of A
if there exists an endomorphism (called a retraction) φ of A
onto B such that φ(b) = b for each element b of B.

• M.Novotný 2007: A construction of all retracts of a general
algebra can be reduced to a construction of all retracts of a
special monounary algebra.
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A - algebra, system End(A) of all endomorphisms of A is a monoid
and the system Aut(A) of all automorphisms of A is a group

Problems of abstract representation:

(G) Is every group isomorphic to the group Aut(A) for some
algebraic structure A?

(M) Is every monoid isomorphic to the monoid End(A) for some
algebraic structure A?
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Abstract representation of automorphism groups

Theorem
Each monoid is isomorphic to End(A) for some unary algebra A.

Proof.
(M, ·, e) be a monoid. Denote by A = (M,F ), F = {fm : m ∈ M},
where fm(x) = x ·m for each x ∈ M.

Corollary
Each group is isomorphic to Aut(A) for some unary algebra A.
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• a semilattice A with G ∼= Aut(A).
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(G.Fuhrken) There exists a group that is not isomorphic to the
automorphism group of any monounary algebra.
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Monounary algebras contra (some) other algebras:
Retract Theorem

• An element t of a structure A is said to be a test element if
for any endomorphism φ of A, φ(t) = t implies that φ is an
automorphism.

• The notion test words was first considered in the context of
free groups: the first example Nielsen 1918: the commutator
[a, b] = aba−1b−1 is a test word in the free group F (a, b).

• Test elements can be applied for distinguishing
automorphisms from non-automorphisms: t is a test
element if φ(t) = α(t) for some automorphism α implies that
φ is an automorphism. Thus the issue of deciding whether φ
is an automorphism is replaced by that of deciding whether
φ(t) and t are equivalent under the action of the
automorphism group of a given structure.
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Retract Theorem

• If t is a test element of A, then t does not belong to any
proper retract of A.

E. C. Turner 1996 proved Retract Theorem for free groups:

Theorem
A word w in a free group F is a test word if and only if w is not in
any proper retract of F .

• D. A. Voce 1995: there exists a group for which Retract
Theorem fails to be valid (e.g. a fundamental group of the
Klein bottle).
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Retract Theorem

DJS, J. Pócs 2007:
• Retract Theorem is valid for each finite structure.

• There exists a unary algebra A with two operations such that
A contains an element t which is not a test element and
which does not belong to any proper retract of A. Therefore
for unary algebras with at least two operations Retract
Theorem does not hold in general.

• Retract Theorem is valid for each monounary algebra.



Retract Theorem

DJS, J. Pócs 2007:
• Retract Theorem is valid for each finite structure.

• There exists a unary algebra A with two operations such that
A contains an element t which is not a test element and
which does not belong to any proper retract of A. Therefore
for unary algebras with at least two operations Retract
Theorem does not hold in general.

• Retract Theorem is valid for each monounary algebra.



Retract Theorem

DJS, J. Pócs 2007:
• Retract Theorem is valid for each finite structure.

• There exists a unary algebra A with two operations such that
A contains an element t which is not a test element and
which does not belong to any proper retract of A. Therefore
for unary algebras with at least two operations Retract
Theorem does not hold in general.

• Retract Theorem is valid for each monounary algebra.



Retract Theorem

DJS, J. Pócs 2007:
• Retract Theorem is valid for each finite structure.

• There exists a unary algebra A with two operations such that
A contains an element t which is not a test element and
which does not belong to any proper retract of A. Therefore
for unary algebras with at least two operations Retract
Theorem does not hold in general.

• Retract Theorem is valid for each monounary algebra.



Figure:



Figure:



Monounary algebras contra (some) other algebras:
Convexities

• The notion of convexity of lattices is due to E. Fried; at the
Problem Session of the Conference on General Algebra
(Krems, 1988) he defined it as a nonempty class of lattices
which is closed with respect to homomorphisms, direct
products and convex sublattices.

• number of convexities of lattices?

• operators on a class K of algebras
• H = forming homomorphic images
• S = forming subalgebras
• P = forming direct products
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Convexities

J. Jakubík 1992:

Theorem
The system of all convexities of lattices is a proper class.

• Convexities defined also for other types of algebraic
structures, e.g., partially ordered groups as l-groups,
d-groups, Riesz groups
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Convexities

• A class of partial monounary algebras is said to be a convexity
if it is closed under homomorphic images, direct products and
convex relative subalgebras (operators H,C,P).

DJS 2009

Theorem
Let T be a class of partial monounary algebras. Then HCP T is
the least convexity containing T (it is called a convexity generated
by T ).
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Convexities

K the collection of all convexities of partial monounary algebras
(including the empty system); this collection is partially ordered by
inclusion

Theorem
The lattice K consists of 23 convexities of partial monounary
algebras; the smallest one is ∅, the greatest (class of all partial
monounary algebras) is generated by Z with the operation of
successor. There are 13 principal convexities. For each T ∈ K
there is T0 with at most two elements such that T is generated by
T0.
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Monounary algebras contra (some) other algebras:
Pseudovarieties

• variety = a class of those algebras which satisfy a given set
of identities

• operators on a class K of algebras

• H
• S
• P

Theorem
(Birkhoff) Each variety can be characterized as a class which is
closed with respect to the operators H, S, P.
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(A, f ) - finite connected monounary algebra with a cycle C

• range r(A, f ) = |C |
• depth
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Pseudovarieties

• Make a characterization of finitely generated pseudovarieties
of monounary algebras by finding algebras which generate
them
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(A′1k , f ) - a monounary algebra which is a disjoint union of

• (A1k , f )
and

• a one-element cycle {0′} (a loop)
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Finitely generated pseudovarieties

• characterization of finitely generated pseudovarieties of
monounary algebras by finding algebras which generate them

Lemma
Let k ∈ N ∪ {0}, n ∈ N, n > 1. The pseudovariety generated by
(Ank , f ) consists of all finite monounary algebras (A, f ) such that

(i) r(A, f ) divides n,

(ii) d(A, f ) ≤ k .
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Finitely generated pseudovarieties

Theorem
A class P of finite monounary algebras is a finitely generated
pseudovariety if and only if one of the following conditions is
satisfied:
(a) There are k ∈ N∪ {0}, n ∈ N such that P consists of all finite

monounary algebras (A, f ) with
(i) r(A, f ) divides n,
(ii) d(A, f ) ≤ k.

(b) There is k ∈ N ∪ {0} such that P consists of all finite
monounary algebras (A, f ) with the following properties:

(i) (A, f ) is connected,
(ii) r(A, f ) = 1,
(iii) d(A, f ) ≤ k.

If (a), n > 1, then P is generated by (Ank , f ) and if n = 1, then by
(A′1k , f ). If (b), P is generated by (A1k , f ).
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(b) There is k ∈ N ∪ {0} such that P consists of all finite
monounary algebras (A, f ) with the following properties:

(i) (A, f ) is connected,
(ii) r(A, f ) = 1,
(iii) d(A, f ) ≤ k.

If (a), n > 1, then P is generated by (Ank , f ) and if n = 1, then by
(A′1k , f ). If (b), P is generated by (A1k , f ).
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Finitely generated and equational pseudovarieties

• U - the system of all monounary algebras
• UF - the system of all finite monounary algebras

Theorem
A class P of finite monounary algebras is a finitely generated
pseudovariety if and only if P consists of all finite algebras
belonging to a variety V 6= U of monounary algebras.

Corollary
If P 6= UF is a pseudovariety of monounary algebras, then it is
finitely generated if and only if it is equational.
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Pseudovarieties

P - pseudovariety
• generated by algebras (Sm, f ), m ∈ N of types (Ank , f ) or
(A′1k , f )

• denote Pn - pseudovariety, generated by the set
{(Sm, f ) : m ≤ n}

Then
P =

⋃
n∈N
Pn

r(P) =
{
l.c.m.{r(Sm, f ) : m ∈ N} if it exists,
∞ otherwise

d(P) =
{

max{d(Sm, f ) : m ∈ N} if it exists,
∞ otherwise
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Pseudovarieties

Theorem

(i) n = r(P) 6=∞, k = d(P) 6=∞ =⇒ P is finitely generated
(ii) n = r(P) 6=∞, d(P) =∞ =⇒

• n = 1, P consists of all finite connected algebras with a
one-element cycle, or

• P consists of all finite algebras (A, f ) such that r(A, f ) divides
n

(iii) r(P) =∞, k = d(P) 6=∞ =⇒ P consists of all finite
algebras (A, f ) such that r(A, f ) divides r(Sm, f ) for some
m ∈ N and d(A, f ) ≤ k

(iv) r(P) = d(P) =∞ =⇒ P consists of all finite algebras
(A, f ) such that r(A, f ) divides r(Sm, f ) for some m ∈ N.
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Monounary algebras contra (some) other algebras:
Globals

• P(A) = (P(A),F ) is a global of an algebra A = (A,F ) if
f ∈ F is n-ary, B1, . . . ,Bn are subsets of A, then

f (B1, . . . ,Bn) = {f (b1, . . . , bn) : b1 ∈ B1, . . . , bn ∈ Bn}.

• A class C of algebraic structures of the same type is said to be
globally determined if for each A1,A2 ∈ C

P(A1) ∼= P(A2) =⇒ A1 ∼= A2.
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Globals

• class of all groups is globally determined (T. Tamura,
J. Shafer 1967)

• class of all semigroups fails to be globally determined
(E. M. Mogiljanskaja 1973)

• class of all monounary algebras fails to be globally
determined (A. Drápal 1985)

• class of all finite monounary algebras is globally determined
(A. Drápal 1985)
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Globals

J. Herchl, DJS 2007:

Proposition
There exist 7-element algebras A1,A2 with two unary operations
such that

(i) each operation makes a cycle of the corresponding algebra,

(ii) A1 � A2,
(iii) P(A1) ∼= P(A2).

Corollary
The class of all finite biunary algebras is not globally determined.

Theorem
The class of all finite unary algebras fails to be globally determined.
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