
Enforced hamiltonian cycles

Igor Fabrici
P. J. Šafárik University, Košice

Nový Smokovec, October 11, 2010

 

  

Podporujeme výskumné aktivity na Slovensku/ 
Projekt je spolufinancovaný zo zdrojov EÚ 

 



Definition
A graph G of order n is

hamiltonian, if it contains a hamiltonian cycle
traceable, if it contains a hamiltonian path
k-hamiltonian, if every subgraph of G of order ≥ n− k is
hamiltonian

Proposition

2-hamiltonian
↓

1-hamiltonian
↓

hamiltonian
↓

traceable
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H-force number

Definition
An X-cycle of G is a cycle containing all vertices of X ⊆ V (G)

Definition
A nonempty set X ⊆ V (G) is called a hamiltonian cycle enforcing
set (H-force set) of G if every X-cycle of G is hamiltonian.

For a hamiltonian graph G we define H-force number h = h(G)
of G as the smallest cardinality of an H-force set of G.
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Proposition

If X is an H-force set of a graph G and X ⊆ Y ⊆ V (G) then Y is
an H-force set of G.

Proposition

If H is a hamiltonian spanning subgraph of G then h(H) ≤ h(G).

Proposition
If C is a nonhamiltonian cycle of G then any H-force set of G
contains a vertex of V (G) \ V (C).
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Theorem (F., Hexel, Jendrol’)

For all integers n ≥ 10 and k where 1 ≤ k ≤ n, there exists a
hamiltonian graph G of order n with h(G) = k.

Proposition

h(G) = 1⇔ G = Cn
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1-hamiltonian graphs

The number of vertices (the order) of a graph will be denoted by n

Proposition

h(G) = n⇔ G 1-hamiltonian



Theorem (Chartrand, Kapoor, Link, 1970)

σ2(G) ≥ n+ 1 (n ≥ 4) ⇒ G 1-hamiltonian

Theorem (Chvátal, Erdős, 1972)

α(G) < κ(G) (κ(G) ≥ 3) ⇒ G 1-hamiltonian

Theorem (Nelson, 1973)

G 4-connected planar ⇒ G 1-hamiltonian

Theorem (Bondy, 1975)

G a Halin graph ⇒ G 1-hamiltonian

Theorem (Broersma, Veldman, 1987)

G connected, locally 2-connected, claw free (n ≥ 4) ⇒ G 1-hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

G 2-connected ⇒ G2 1-hamiltonian
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Theorem (Ore, 1959)

σ2(G) ≥ n+ 1 (n ≥ 4) ⇒ G hamiltonian-connected

Theorem (Chvátal, Erdős, 1972)

α(G) < κ(G) (κ(G) ≥ 3) ⇒ G hamiltonian-connected

Theorem (Thomassen, 1983, and Chiba, Nishizeki, 1986)

G 4-connected planar ⇒ G hamiltonian-connected

Theorem (Barefoot, 1987)

G a Halin graph ⇒ G hamiltonian-connected

Theorem (Kanetkar, Rao, 1984)

G connected, locally 2-connected, claw free (n ≥ 4) ⇒ G ham.-conn.

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

G 2-connected ⇒ G2 hamiltonian-connected



1-hamiltonian, ham.-connected,
not ham.-connected not 1-hamiltonian



Bipartite graphs, planar graphs

Proposition

Let G be a hamiltonian graph. If there exists a set S ⊆ V (G) with
c(G− S) = |S| then h(G) ≤ n− |S|.

Corollary

If G is a hamiltonian graph with κ(G) = 2 then h(G) ≤ n− 2.

Corollary

If G is a hamiltonian graph with α(G) = n
2 then h(G) ≤ n

2 .

Corollary

h(Kn
2

, n
2
) = n

2
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Theorem (F., Hexel, Jendrol’)

If G is a hamiltonian graph with κ(G) ≥ 3 then

h(G) ≥
{
κ(G), if G bipartite
κ(G) + 1, if G non-bipartite



Definition
The weak-dual D∗(G) of an outerplanar graph G is its dual
without the vertex corresponding to the outerface and `(G) denotes
the number of leafs of D∗(G).
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Definition
The weak-dual D∗(G) of an outerplanar graph G is its dual
without the vertex corresponding to the outerface and `(G) denotes
the number of leafs of D∗(G).

Theorem (F., Hexel, Jendrol’)

If G 6= Cn is an outerplanar hamiltonian graph then h(G) = `(G).



For a plane graph G with a hamiltonian cycle C let G1 (or G2) be
the outerplanar graph consisting of C and all edges of G lying
inside (outside) of C.

Theorem (F., Hexel, Jendrol’)

If G is a planar hamiltonian graph with δ(G) ≥ 3 then
h(G) ≥ `(G1) + `(G2) ≥ 4.



Prisms over graphs

Definition
The prism over a graph G is the Cartesian product G�K2
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Definition
G is prism-hamiltonian, if G�K2 is hamiltonian



Proposition

1-hamiltonian
↓

hamiltonian
↓

traceable
↓

prism-hamiltonian



Let G be a graph of order n
2 (then the prism G�K2 is of order n)

Theorem (F., Hexel, Jendrol’)

If G is hamiltonian then h(G�K2) =
{

n
2 , if G bipartite
n, if G non-bipartite

Theorem (F.)

If G is a traceable graph with a articulation points and p pendant

vertices then h(G�K2) =
{

n
2 − a, if G bipartite
n− 2a− p, if G non-bipartite
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2 (then the prism G�K2 is of order n)

Theorem (F., Hexel, Jendrol’)

If G is hamiltonian then h(G�K2) =
{

n
2 , if G bipartite
n, if G non-bipartite

Theorem (F.)

If G is a traceable graph with a articulation points and p pendant

vertices then h(G�K2) =
{

n
2 − a, if G bipartite
n− 2a− p, if G non-bipartite



Theorem (Fleischner, 1974)

G 2-connected ⇒ G2 hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

G 2-connected ⇒ G2 1-hamiltonian

Theorem (Kaiser, Kráľ, Rosenfeld, Ryjáček, Voss, 2007)

G connected ⇒ G2 prism-hamiltonian

Theorem (F.)

G connected ⇒ h(G2�K2) = n
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Graphs with small H-force number

Proposition

h(G) = 1⇔ G = Cn

Definition
Let C = [v1, v2, . . . , vn] be a hamiltonian cycle of G. A chord vivj

(i < j − 1) separates vertices vk, vl (k < l − 1) on C, if they
belong to different components of C − vi − vj , and, moreover,
crosses the chord vkvl, if vkvl ∈ E(G).
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Theorem (F., Hexel, Jendrol’)

Let G 6= Cn be a hamiltonian graph and C = [v1, v2, . . . , vn] be
a hamiltonian cycle of G. Then h(G) = 2 if and only if

1 there exist x, y ∈ V (G), degG(x) = degG(y) = 2, such that
every chord vivj (i < j − 1) separates x, y and

2 for every pair vivj (i < j − 1) and vkvl (k < l − 1) of crossing
chords vivk, vjvl ∈ E(C)
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Theorem (F., Hexel, Jendrol’)

Let G 6= Cn be a hamiltonian graph and C = [v1, v2, . . . , vn] be
a hamiltonian cycle of G. Then h(G) = 2 if and only if
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Corollary

h(G) = 2⇒ κ(G) = 2 and G planar
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If G is a 3-connected hamiltonian graph then

h(G) ≥ 4 or
G results from K3,3 by adding any edges in one partition class
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Thank you.


