Enforced hamiltonian cycles

Igor Fabrici P. J. Šafárik University, Košice

Nový Smokovec, October 11, 2010

Európska únia Európsky fond regionálneho rozvoja

Podporujeme výskumné aktivity na Slovensku/ Projekt je spolufinancovaný zo zdrojov EÚ

(a) (a) (a) (a) (a)

A graph ${\cal G}$ of order n is

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

A graph ${\cal G}$ of order n is

• hamiltonian, if it contains a hamiltonian cycle

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

A graph ${\cal G}$ of order n is

• hamiltonian, if it contains a hamiltonian cycle

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

• traceable, if it contains a hamiltonian path

A graph ${\cal G}$ of order n is

- hamiltonian, if it contains a hamiltonian cycle
- traceable, if it contains a hamiltonian path
- **k**-hamiltonian, if every subgraph of G of order $\geq n k$ is hamiltonian

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

A graph ${\cal G}$ of order n is

- hamiltonian, if it contains a hamiltonian cycle
- traceable, if it contains a hamiltonian path
- **k-hamiltonian**, if every subgraph of G of order $\geq n k$ is hamiltonian

Proposition

```
\begin{array}{c} \text{2-hamiltonian} \\ \downarrow \\ \text{1-hamiltonian} \\ \downarrow \\ \text{hamiltonian} \\ \downarrow \\ \text{traceable} \end{array}
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

An **X**-cycle of G is a cycle containing all vertices of $X \subseteq V(G)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

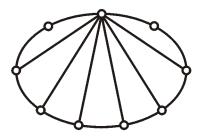
An **X-cycle** of G is a cycle containing all vertices of $X \subseteq V(G)$

Definition

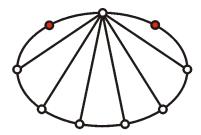
A nonempty set $X \subseteq V(G)$ is called a hamiltonian cycle enforcing set (H-force set) of G if every X-cycle of G is hamiltonian.

For a hamiltonian graph G we define H-force number h = h(G) of G as the smallest cardinality of an H-force set of G.

うして ふゆう ふほう ふほう うらつ

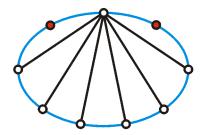


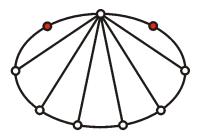
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

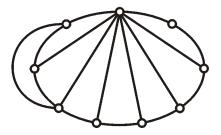


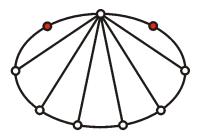


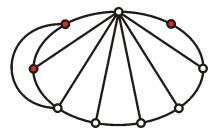
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

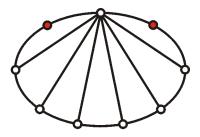


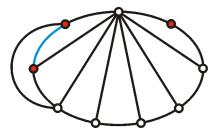


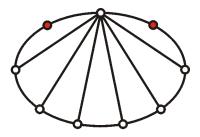


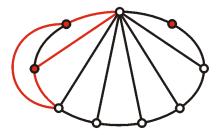


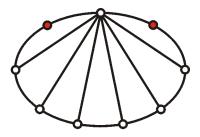


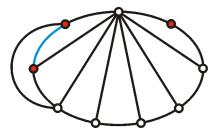


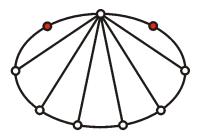




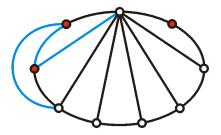


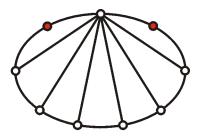


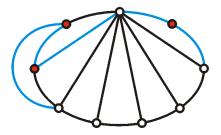




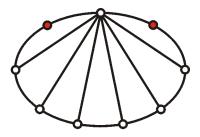
€ 9Q@

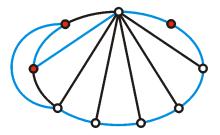




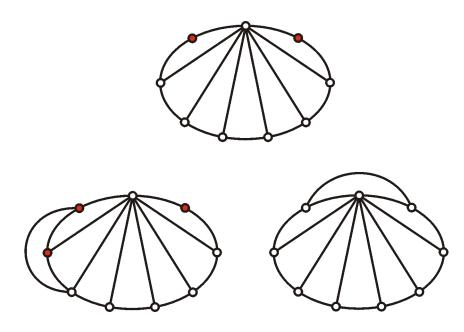


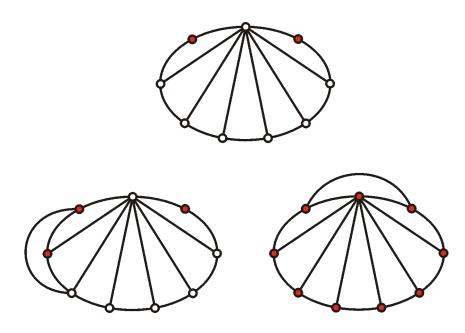
▲□▶ ▲圖▶ ▲国▶ ▲国▶ 三国 - 釣A@





▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで





Proposition

If X is an H-force set of a graph G and $X\subseteq Y\subseteq V(G)$ then Y is an H-force set of G.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Proposition

If X is an H-force set of a graph G and $X\subseteq Y\subseteq V(G)$ then Y is an H-force set of G.

Proposition

If H is a hamiltonian spanning subgraph of G then $h(H) \leq h(G)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Proposition

If X is an H-force set of a graph G and $X\subseteq Y\subseteq V(G)$ then Y is an H-force set of G.

Proposition

If H is a hamiltonian spanning subgraph of G then $h(H) \leq h(G)$.

Proposition

If C is a nonhamiltonian cycle of G then any H-force set of G contains a vertex of $V(G) \setminus V(C)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (F., Hexel, Jendrol')

For all integers $n \ge 10$ and k where $1 \le k \le n$, there exists a hamiltonian graph G of order n with h(G) = k.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (F., Hexel, Jendrol')

For all integers $n \ge 10$ and k where $1 \le k \le n$, there exists a hamiltonian graph G of order n with h(G) = k.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proposition

 $h(G) = 1 \Leftrightarrow G = C_n$

The number of vertices (the order) of a graph will be denoted by n

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Proposition $h(G) = n \Leftrightarrow G$ 1-hamiltonian

$\sigma_2(G) \geq n+1 \ (n \geq 4) \ \Rightarrow \ G \ \textit{1-hamiltonian}$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

 $\sigma_2(G) \ge n+1 \ (n \ge 4) \ \Rightarrow \ G \ 1\text{-hamiltonian}$

Theorem (Chvátal, Erdős, 1972)

 $\alpha(G) < \kappa(G) \ (\kappa(G) \geq 3) \ \Rightarrow \ G \ 1\text{-hamiltonian}$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$$\sigma_2(G) \ge n+1 \ (n \ge 4) \ \Rightarrow \ G \ 1\text{-hamiltonian}$$

Theorem (Chvátal, Erdős, 1972)

 $\alpha(G) < \kappa(G) \ (\kappa(G) \geq 3) \ \Rightarrow \ G \ \text{1-hamiltonian}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Theorem (Nelson, 1973)

G 4-connected planar \Rightarrow G 1-hamiltonian

$$\sigma_2(G) \ge n+1 \ (n \ge 4) \ \Rightarrow \ G \ 1\text{-hamiltonian}$$

Theorem (Chvátal, Erdős, 1972)

 $\alpha(G) < \kappa(G) \ (\kappa(G) \geq 3) \ \Rightarrow \ G \ \text{1-hamiltonian}$

Theorem (Nelson, 1973)

G 4-connected planar \Rightarrow G 1-hamiltonian

Theorem (Bondy, 1975)

 $G \text{ a Halin graph} \Rightarrow G \text{ 1-hamiltonian}$

$$\sigma_2(G) \geq n+1 \ (n \geq 4) \ \Rightarrow \ G \ \text{1-hamiltonian}$$

Theorem (Chvátal, Erdős, 1972)

 $\alpha(G) < \kappa(G) \ (\kappa(G) \geq 3) \ \Rightarrow \ G \ \text{1-hamiltonian}$

Theorem (Nelson, 1973)

G 4-connected planar \Rightarrow G 1-hamiltonian

Theorem (Bondy, 1975)

 $G \text{ a Halin graph} \Rightarrow G \text{ 1-hamiltonian}$

Theorem (Broersma, Veldman, 1987)

G connected, locally 2-connected, claw free $(n \ge 4) \Rightarrow G$ 1-hamiltonian

うして ふゆう ふほう ふほう うらつ

$$\sigma_2(G) \geq n+1 \ (n \geq 4) \ \Rightarrow \ G \ \textit{1-hamiltonian}$$

Theorem (Chvátal, Erdős, 1972)

 $\alpha(G) < \kappa(G) \ (\kappa(G) \geq 3) \ \Rightarrow \ G \ 1\text{-hamiltonian}$

Theorem (Nelson, 1973)

G 4-connected planar \Rightarrow G 1-hamiltonian

Theorem (Bondy, 1975)

 $G \text{ a Halin graph} \Rightarrow G \text{ 1-hamiltonian}$

Theorem (Broersma, Veldman, 1987)

G connected, locally 2-connected, claw free $(n \ge 4) \Rightarrow G$ 1-hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

G 2-connected \Rightarrow G^2 1-hamiltonian

Theorem (Ore, 1959)

$$\sigma_2(G) \geq n+1 \ (n \geq 4) \ \Rightarrow \ G \ \textit{hamiltonian-connected}$$

Theorem (Chvátal, Erdős, 1972)

 $\alpha(G) < \kappa(G) \ (\kappa(G) \geq 3) \ \Rightarrow \ G \ \textit{hamiltonian-connected}$

Theorem (Thomassen, 1983, and Chiba, Nishizeki, 1986)

G 4-connected planar \Rightarrow G hamiltonian-connected

Theorem (Barefoot, 1987)

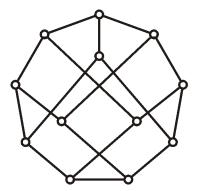
G a Halin graph \Rightarrow G hamiltonian-connected

Theorem (Kanetkar, Rao, 1984)

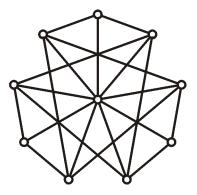
G connected, locally 2-connected, claw free $(n \ge 4) \Rightarrow G$ ham.-conn.

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

G 2-connected \Rightarrow G^2 hamiltonian-connected



1-hamiltonian, not ham.-connected



ham.-connected, not 1-hamiltonian

Let G be a hamiltonian graph. If there exists a set $S \subseteq V(G)$ with c(G-S) = |S| then $h(G) \le n - |S|$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let G be a hamiltonian graph. If there exists a set $S \subseteq V(G)$ with c(G-S) = |S| then $h(G) \le n - |S|$.

Corollary

If G is a hamiltonian graph with $\kappa(G) = 2$ then $h(G) \leq n - 2$.

うして ふゆう ふほう ふほう うらつ

Let G be a hamiltonian graph. If there exists a set $S \subseteq V(G)$ with c(G-S) = |S| then $h(G) \le n - |S|$.

Corollary

If G is a hamiltonian graph with $\kappa(G) = 2$ then $h(G) \leq n-2$.

Corollary

If G is a hamiltonian graph with $\alpha(G) = \frac{n}{2}$ then $h(G) \leq \frac{n}{2}$.

うして ふゆう ふほう ふほう うらつ

Let G be a hamiltonian graph. If there exists a set $S \subseteq V(G)$ with c(G-S) = |S| then $h(G) \le n - |S|$.

Corollary

If G is a hamiltonian graph with $\kappa(G) = 2$ then $h(G) \le n-2$.

Corollary

If G is a hamiltonian graph with $\alpha(G) = \frac{n}{2}$ then $h(G) \leq \frac{n}{2}$.

ション ふゆ アメリア メリア しょうくしゃ

Corollary

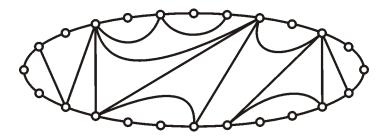
$$h(K_{\frac{n}{2},\frac{n}{2}}) = \frac{n}{2}$$

If G is a hamiltonian graph with $\kappa(G)\geq 3$ then

$$h(G) \geq \left\{ \begin{array}{ll} \kappa(G), & \text{if } G \text{ bipartite} \\ \kappa(G) + 1, & \text{if } G \text{ non-bipartite} \end{array} \right.$$

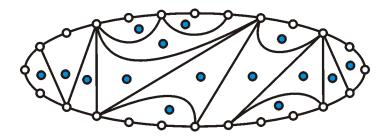
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The weak-dual $D^*(G)$ of an outerplanar graph G is its dual without the vertex corresponding to the outerface and $\ell(G)$ denotes the number of leafs of $D^*(G)$.



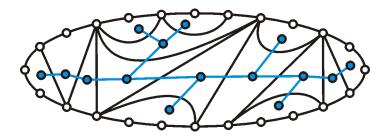
(日) (四) (日) (日)

The weak-dual $D^*(G)$ of an outerplanar graph G is its dual without the vertex corresponding to the outerface and $\ell(G)$ denotes the number of leafs of $D^*(G)$.



・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

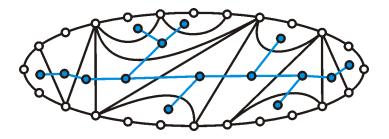
The weak-dual $D^*(G)$ of an outerplanar graph G is its dual without the vertex corresponding to the outerface and $\ell(G)$ denotes the number of leafs of $D^*(G)$.



・ロト ・聞ト ・ヨト ・ヨト

3

The weak-dual $D^*(G)$ of an outerplanar graph G is its dual without the vertex corresponding to the outerface and $\ell(G)$ denotes the number of leafs of $D^*(G)$.



Theorem (F., Hexel, Jendrol')

If $G \neq C_n$ is an outerplanar hamiltonian graph then $h(G) = \ell(G)$.

For a plane graph G with a hamiltonian cycle C let G_1 (or G_2) be the outerplanar graph consisting of C and all edges of G lying inside (outside) of C.

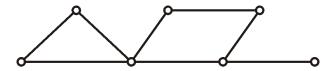
▲ロト ▲周ト ▲ヨト ▲ヨト 三日 - のへで

Theorem (F., Hexel, Jendrol')

If G is a planar hamiltonian graph with $\delta(G) \ge 3$ then $h(G) \ge \ell(G_1) + \ell(G_2) \ge 4$.

Definition

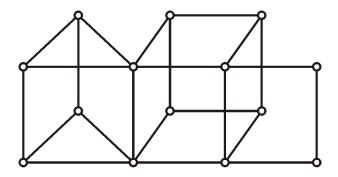
The prism over a graph G is the Cartesian product $G \Box K_2$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Definition

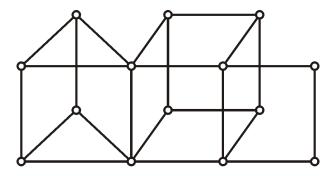
The prism over a graph G is the Cartesian product $G \Box K_2$



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

Definition

The prism over a graph G is the Cartesian product $G \Box K_2$



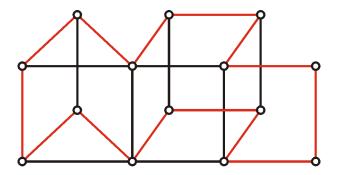
Definition

G is prism-hamiltonian, if $G \Box K_2$ is hamiltonian

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

Definition

The prism over a graph G is the Cartesian product $G \Box K_2$



Definition

G is prism-hamiltonian, if $G \Box K_2$ is hamiltonian

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

Let G be a graph of order $\frac{n}{2}$ (then the prism $G \Box K_2$ is of order n)

Theorem (F., Hexel, Jendrol')

If G is hamiltonian then $h(G \Box K_2) = \begin{cases} \frac{n}{2}, & \text{if } G \text{ bipartite} \\ n, & \text{if } G \text{ non-bipartite} \end{cases}$

うして ふゆう ふほう ふほう うらつ

Let G be a graph of order $\frac{n}{2}$ (then the prism $G \Box K_2$ is of order n)

Theorem (F., Hexel, Jendrol')

If G is hamiltonian then
$$h(G \Box K_2) = \begin{cases} \frac{n}{2}, & \text{if } G \text{ bipartite} \\ n, & \text{if } G \text{ non-bipartite} \end{cases}$$

Theorem (F.)

If G is a traceable graph with a articulation points and p pendant vertices then $h(G \Box K_2) = \begin{cases} \frac{n}{2} - a, & \text{if } G \text{ bipartite} \\ n - 2a - p, & \text{if } G \text{ non-bipartite} \end{cases}$

うして ふゆう ふほう ふほう うらつ

G 2-connected \Rightarrow G^2 hamiltonian

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

G 2-connected \Rightarrow G^2 hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

G 2-connected \Rightarrow G^2 1-hamiltonian

G 2-connected \Rightarrow G^2 hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

うして ふゆう ふほう ふほう うらつ

G 2-connected \Rightarrow G^2 1-hamiltonian

Theorem (Kaiser, Kráľ, Rosenfeld, Ryjáček, Voss, 2007)

 $G \text{ connected} \Rightarrow G^2 \text{ prism-hamiltonian}$

G 2-connected \Rightarrow G^2 hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

(日) (伊) (日) (日) (日) (0) (0)

G 2-connected \Rightarrow G^2 1-hamiltonian

Theorem (Kaiser, Kráľ, Rosenfeld, Ryjáček, Voss, 2007)

 $G \text{ connected} \Rightarrow G^2 \text{ prism-hamiltonian}$

Theorem (F.)

 $G \text{ connected} \Rightarrow h(G^2 \Box K_2) = n$

G 2-connected \Rightarrow G^2 hamiltonian

Theorem (Chartrand, Hobbs, Jung, Kapoor, Link, Nash-Williams, 1974)

うして ふゆう ふほう ふほう うらつ

G 2-connected \Rightarrow G^2 1-hamiltonian

Theorem (Kaiser, Kráľ, Rosenfeld, Ryjáček, Voss, 2007)

 $G \text{ connected} \Rightarrow G^2 \Box K_2 \text{ hamiltonian}$

Theorem (F.)

 $G \text{ connected} \Rightarrow G^2 \Box K_2 \text{ 1-hamiltonian}$

Graphs with small H-force number

Proposition

 $h(G) = 1 \Leftrightarrow G = C_n$

Definition

Let $C = [v_1, v_2, ..., v_n]$ be a hamiltonian cycle of G. A chord $v_i v_j$ (i < j - 1) separates vertices v_k , v_l (k < l - 1) on C, if they belong to different components of $C - v_i - v_j$, and, moreover, crosses the chord $v_k v_l$, if $v_k v_l \in E(G)$.

うして ふゆう ふほう ふほう うらつ

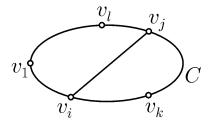
Graphs with small H-force number

Proposition

 $h(G) = 1 \Leftrightarrow G = C_n$

Definition

Let $C = [v_1, v_2, ..., v_n]$ be a hamiltonian cycle of G. A chord $v_i v_j$ (i < j - 1) separates vertices v_k , v_l (k < l - 1) on C, if they belong to different components of $C - v_i - v_j$, and, moreover, crosses the chord $v_k v_l$, if $v_k v_l \in E(G)$.



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

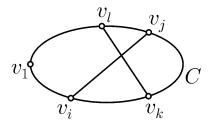
Graphs with small H-force number

Proposition

 $h(G) = 1 \Leftrightarrow G = C_n$

Definition

Let $C = [v_1, v_2, ..., v_n]$ be a hamiltonian cycle of G. A chord $v_i v_j$ (i < j - 1) separates vertices v_k , v_l (k < l - 1) on C, if they belong to different components of $C - v_i - v_j$, and, moreover, crosses the chord $v_k v_l$, if $v_k v_l \in E(G)$.



うして ふゆう ふほう ふほう うらつ

Let $G \neq C_n$ be a hamiltonian graph and $C = [v_1, v_2, \dots, v_n]$ be a hamiltonian cycle of G. Then h(G) = 2 if and only if

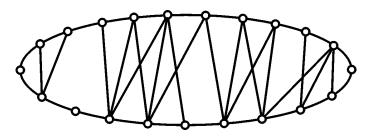
- there exist $x, y \in V(G)$, $\deg_G(x) = \deg_G(y) = 2$, such that every chord $v_i v_j$ (i < j 1) separates x, y and
- for every pair $v_i v_j$ (i < j − 1) and $v_k v_l$ (k < l − 1) of crossing chords $v_i v_k, v_j v_l \in E(C)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

Let $G \neq C_n$ be a hamiltonian graph and $C = [v_1, v_2, \dots, v_n]$ be a hamiltonian cycle of G. Then h(G) = 2 if and only if

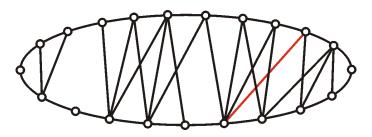
• there exist $x, y \in V(G)$, $\deg_G(x) = \deg_G(y) = 2$, such that every chord $v_i v_j$ (i < j - 1) separates x, y and

• for every pair $v_i v_j$ (i < j - 1) and $v_k v_l$ (k < l - 1) of crossing chords $v_i v_k, v_j v_l \in E(C)$



Let $G \neq C_n$ be a hamiltonian graph and $C = [v_1, v_2, \dots, v_n]$ be a hamiltonian cycle of G. Then h(G) = 2 if and only if

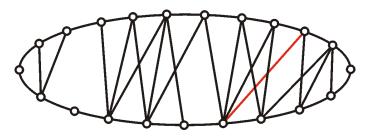
- there exist $x, y \in V(G)$, $\deg_G(x) = \deg_G(y) = 2$, such that every chord $v_i v_j$ (i < j - 1) separates x, y and
- for every pair $v_i v_j$ (i < j 1) and $v_k v_l$ (k < l 1) of crossing chords $v_i v_k, v_j v_l \in E(C)$



Let $G \neq C_n$ be a hamiltonian graph and $C = [v_1, v_2, \dots, v_n]$ be a hamiltonian cycle of G. Then h(G) = 2 if and only if

• there exist $x, y \in V(G)$, $\deg_G(x) = \deg_G(y) = 2$, such that every chord $v_i v_j$ (i < j - 1) separates x, y and

• for every pair $v_i v_j$ (i < j - 1) and $v_k v_l$ (k < l - 1) of crossing chords $v_i v_k, v_j v_l \in E(C)$



Corollary

$$h(G) = 2 \Rightarrow \kappa(G) = 2$$
 and G planar

If ${\cal G}$ is a 3-connected hamiltonian graph then

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

If ${\cal G}$ is a 3-connected hamiltonian graph then

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

•
$$h(G) \ge 4$$
 or

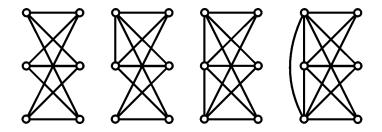
If G is a 3-connected hamiltonian graph then

- $h(G) \ge 4$ or
- G results from $K_{3,3}$ by adding any edges in one partition class

・ロト ・ 日 ・ モ ト ・ 日 ・ うらぐ

If G is a 3-connected hamiltonian graph then

- $h(G) \ge 4$ or
- $\bullet~G$ results from $K_{3,3}$ by adding any edges in one partition class



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If G is a planar 3-connected hamiltonian graph then

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

If G is a planar 3-connected hamiltonian graph then

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

• $h(G) \geq 5$ or

If G is a planar 3-connected hamiltonian graph then

▲□▶ ▲圖▶ ▲ 臣▶ ★ 臣▶ 三臣 … 釣�?

•
$$h(G) \ge 5$$
 or

•
$$G = K_4$$
 or

If G is a planar 3-connected hamiltonian graph then

- $h(G) \ge 5$ or
- $G = K_4$ or
- *G* results from the graph of the cube by adding any edges in one partition class

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you.