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Planar graphs

A sequence r1, r2, . . . , r2n such that ri = rn+i for all 1 ≤ i ≤ n, is
called a repetition. A sequence S is called non-repetitive if no
subsequence of consecutive terms of S is a repetition.

Example
1, 2, 1, 3, 1, 4, 3, 2, 1, 2 is non-repetitive.

1, 2, 1, 3, 1, 4, 3, 1, 4, 2 is repetitive.

Theorem (Thue 1906)

There is an arbitrarily long non-repetitive sequence that is formed
using three symbols.
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NON-REPETITIVE EDGE-COLOURINGS
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Thue chromatic index

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

An edge-colouring of a graph G is a non-repetitive if the sequence
of colours on any path in G is non-repetitive.

The Thue chromatic index of G, denoted π′(G), is the minimum
number of colours of a non-repetitive edge-colouring of G.

Theorem (Thue, 1906)

π′(Pn) = 3 for every n ≥ 5.
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Thue chromatic index

Theorem (Currie 2002)

π′(Cn) =

{
4 for n ∈ {5, 7, 9, 10, 14, 17}
3 else.

Theorem (Alon, Grytczuk, Haluszczak, Riordan, 2002)

Let G be a simple graph. Then

∆(G) ≤ χ′(G) ≤ π′(G) ≤ c′∆(G)2 for some constant c′.
π′(T ) ≤ 4(∆(T )− 1) if T is a tree.
π′(Kn) ≤ 2n.
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Thue chromatic index

Conjecture (Grytczuk, 2008)

There is an absolute constant c such that π′(G) ≤ c∆(G) for any
graph G.
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FACIAL NON-REPETITIVE EDGE-COLOURINGS
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Facial Thue chromatic index

Definition
Let G be a plane graph. A facial trail is a trail made of consecutive
edges of the boundary walk of some face.

A facial non-repetitive edge-colouring of G is an edge-colouring of
G such that any facial trail is non-repetitive.

The facial Thue chromatic index, denoted π′f (G), is the minimum
number of colours of a facial non-repetitive edge-colouring of G.
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Facial Thue chromatic index

The facial Thue chromatic index of the graph depends on the
embedding of the graph.
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Facial Thue chromatic index

Theorem
Let G be a 2-edge-connected plane graph and G∗ be the dual of G.
Then π′f (G) ≤ χ′(G∗).

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a plane triangulation. Then π′f (G) = 3.
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Trees

An internal vertex of a tree is a vertex that is not a leaf.
An almost even tree is a tree in which every internal vertex, except
at most one, is of even degree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be an almost even tree. Then π′f (T ) ≤ 3.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be a tree. Then π′f (T ) ≤ 4. Moreover the bound 4 is tight.
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Trees

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be a tree and let K be a subtree of T which is almost even.
Then there exists a facial non-repetitive 4-edge-colouring of T that
uses only 3 colours on the edges of K.
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Trees

Example
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General upper bounds

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph. Then π′f (G) ≤ 8.

Lemma
Let G be a connected plane graph and let T ∗ be a spanning tree of
its dual G∗. Let T be a subgraph of G with edge set E(T )
associated to the edge set of T ∗. Then G− E(T ) is a tree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a simple 3-connected plane graph. Then π′f (G) ≤ 7.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



General upper bounds

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph. Then π′f (G) ≤ 8.

Lemma
Let G be a connected plane graph and let T ∗ be a spanning tree of
its dual G∗. Let T be a subgraph of G with edge set E(T )
associated to the edge set of T ∗. Then G− E(T ) is a tree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a simple 3-connected plane graph. Then π′f (G) ≤ 7.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



General upper bounds

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph. Then π′f (G) ≤ 8.

Lemma
Let G be a connected plane graph and let T ∗ be a spanning tree of
its dual G∗. Let T be a subgraph of G with edge set E(T )
associated to the edge set of T ∗. Then G− E(T ) is a tree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a simple 3-connected plane graph. Then π′f (G) ≤ 7.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



General upper bounds

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph and let its dual contains a
Hamilton path. Then π′f (G) ≤ 6

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a Halin graph. Then π′f (G) ≤ 6
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Plane hamiltonian graphs

Let G be a plane hamiltonian graph and H a Hamilton cycle in it.
Denote by G1 (resp.G2) the subgraph induced by H and the edges
of G inside (resp. outside) of H. Evidently Gi, i = 1, 2, is a
2-connected outerplanar graph. Let Ti, be the weak dual of Gi,
i = 1, 2, and ∆(Ti) its maximum degree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a hamiltonian plane graph. Then π′f (G) ≤ 7.

Moreover, if max{∆(T1),∆(T2)} ≤ 4 then π′f (G) ≤ 6,

and if max{∆(T1),∆(T2)} ≤ 2 then π′f (G) ≤ 5.
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Outerplanar graphs

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a 2-connected outerplanar graph. Then
π′f (G) ≤ 7.Moreover, denoting by T the weak dual of G the

following holds:
if G is a cycle and |V (G)| = 2 then π′f (G) = 2;
if G is a cycle and |V (G)| 6∈ {2, 5, 7, 9, 10, 14, 17} then
π′f (G) = 3;
if G is a cycle and |V (G)| ∈ {5, 7, 9, 10, 14, 17} then
π′f (G) = 4;
if ∆(T ) ≤ 2 then π′f (G) ≤ 5;
if ∆(T ) ≤ 4 then π′f (G) ≤ 6.
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Discussion

Problem
What is the smallest integer k such that π′f (G) ≤ k for all
connected plane graphs G?

Conjecture (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a 3-connected plane graph. Then π′f (G) ≤ 6.
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NON-REPETITIVE VERTEX-COLOURINGS
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Thue chromatic number

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

A vertex-colouring of a graph G is a non-repetitive if the sequence
of colours on any path in G is non-repetitive.

The Thue chromatic number of G, denoted π(G), is the minimum
number of colours of a non-repetitive vertex-colouring of G.

Theorem (Thue, 1906)

π(Pn) = 3 for every n ≥ 4.

Theorem (Currie, 2002)

π(Cn) =

{
4 for n ∈ {5, 7, 9, 10, 14, 17}
3 else.
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Non-repetitive vertex-colouring of graphs

Theorem (Pezarski, Zmarz, 2009)

Every graph has a subdivision that can be non-repetively coloured
using 3 colours.

Let G be a graph and ∆(G) its maximum degree.

Theorem (Grytczuk, 2007)

Let G be a graph. Then π(G) ≤ 16∆2(G)

Conjecture (Grytczuk, 2007)

There exists an absolute constant k such that any planar graph has
a non-repetitive vertex k-colouring.
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Non-repetitive vertex-colouring of graphs

Theorem (Brešar, Grytczuk, Klavžar, Niwczyk, Peterin, 2007)

Let T be a tree. Then π(T ) ≤ 4. Moreover, the bound 4 is tight.

Theorem (Barat, Varju, 2007; Kundgen, Pelsmajer, 2008)

Let G be an outerplanar graph. Then π(G) ≤ 12.

Theorem (Kundgen, Pelsmajer, 2008)

Let G be a graph of tree-width t ≥ 0. Then π(G) ≤ 4t.
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Theorem (Barat, Varju, 2007; Kundgen, Pelsmajer, 2008)

Let G be an outerplanar graph. Then π(G) ≤ 12.

Theorem (Kundgen, Pelsmajer, 2008)

Let G be a graph of tree-width t ≥ 0. Then π(G) ≤ 4t.
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FACIAL NON-REPETITIVE VERTEX-COLOURINGS
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Facial Thue chromatic number

Definition
Let G be a plane graph. A facial path is a path made of
consecutive vertices of the boundary walk of some face.

A facial non-repetitive vertex-colouring of G is a vertex-colouring of
G such that any facial path is non-repetitive.

The facial Thue chromatic number, denoted πf (G), is the minimum
number of colours of a facial non-repetitive vertex-colouring of G.
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Facial Thue chromatic number

Definition
Let G be a plane graph. A facial path is a path made of
consecutive vertices of the boundary walk of some face.

A facial non-repetitive vertex-colouring of G is a vertex-colouring of
G such that any facial path is non-repetitive.

The facial Thue chromatic number, denoted πf (G), is the minimum
number of colours of a facial non-repetitive vertex-colouring of G.
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Facial Thue chromatic number - examples
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Facial non-repetitive vertex-colouring of graphs

Conjecture (Harant, Jendrol’, 2010)

There exists an absolute constant C such that any plane graph has
a facial non-repetitive vertex C-colouring.

Theorem (Harant, Jendrol’, 2010)

Let G be a plane triangulation. Then 3 ≤ πf (G) = χ0(G) ≤ 4.
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Facial non-repetitive vertex-colouring of graphs

Conjecture (Harant, Jendrol’, 2010)

There exists an absolute constant C such that any plane graph has
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Theorem (Harant, Jendrol’, 2010)

Let G be a plane triangulation. Then 3 ≤ πf (G) = χ0(G) ≤ 4.
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Facial non-repetitive vertex-colouring of graphs

Theorem (Harant, Jendrol’, 2010)

Let G be a Halin graph. Then

πf (G) ≤ 7.
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Facial non-repetitive vertex-colouring of graphs

Theorem (Harant, Jendrol’, 2010)

Let G be a Halin graph. Then

πf (G) ≤ 7.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



Theorem (Harant, Jendrol’, 2010)

Let G be a Halin graph. Then

πf (G) ≤ 7.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



Theorem (Harant, Jendrol’, 2010)

Let G be a Halin graph. Then

πf (G) ≤ 7.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



Theorem (Harant, Jendrol’, 2010)

Let G be a Halin graph. Then

πf (G) ≤ 7.
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Theorem (Harant, Jendrol’, 2010)

Let G be a Halin graph. Then

πf (G) ≤ 7.
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Facial Thue chromatic number of plane hamiltonian graphs

Let G be a plane hamiltonian graph and H a Hamilton cycle in it.
Denote by G1 (resp.G2) the subgraph induced by H and the edges
of G inside (resp. outside) of H. Evidently Gi, i = 1, 2, is a
2-connected outerplanar graph.

Theorem (Harant, Jendrol’, 2010)

Let G be a hamiltonian plane graph. Then πf (G) ≤ 16.

Moreover, if no face of G has its size in {5, 7, 9, 10, 14, 17}, then
πf (G) ≤ 9.

Stanislav Jendroľ P. J. Šafárik University, Košice

Facial non-repetitive colourings of plane graphs



Facial Thue chromatic number of plane hamiltonian graphs

Let G be a plane hamiltonian graph and H a Hamilton cycle in it.
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Facial Thue chromatic number of plane hamiltonian graphs

Lemma
Let G be a 2-connected outerplanar graph. Then the vertices of G
can be coloured with 4 colours in such a way that no interior face
contains a repetition.
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Lemma
Let G be a 2-connected outerplanar graph. Then the vertices of G
can be coloured with 4 colours in such a way that no interior face
contains a repetition.
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Let fi(v) be a colour obtained by a vertex v in a 4−colouring of Gi

according the Lemma. Then we colour the vertex v of G with the
ordered pair (f1(v), f2(v)). Clearly this colouring has requred
properties.
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Theorem (Harant, Jendrol’, 2010)

Let G be a 4-connected plane graph. Then πf (G) ≤ 16.

Moreover, if no face of G has its size in {5, 7, 9, 10, 14, 17}, then
πf (G) ≤ 9.
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Theorem (Harant, Jendrol’, 2010)

Let G be a 4-connected plane graph. Then πf (G) ≤ 16.

Moreover, if no face of G has its size in {5, 7, 9, 10, 14, 17}, then
πf (G) ≤ 9.
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Nonrepetitive vertex-colouring of cubic plane graphs

Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected cubic plane graph. Then πf (G) ≤ 112.

Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected bipartite cubic plane graph. Then
πf (G) ≤ 31.

Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected cubic plane graph all faces of which are
multi-4-gonal. Then πf (G) ≤ 27.
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Nonrepetitive vertex-colouring of cubic plane graphs
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Nonrepetitive vertex-colouring of cubic plane graphs

Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected cubic plane graph. Then πf (G) ≤ 112.

Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected bipartite cubic plane graph. Then
πf (G) ≤ 31.
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Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected cubic plane graph. Then

πf (G) ≤ 256.
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Theorem (Harant, Jendrol’, 2010)

Let G be a 2-connected cubic plane graph. Then

πf (G) ≤ 256.
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Thanks for your attention
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