Facial non-repetitive colourings of plane graphs

Stanislav Jendroľ

P. J. Šafárik University, Košice

joint work with Jochen Harant, Frédéric Havet, Roman Soták, Erika Škrabuľáková

Planar graphs

A sequence r_1, r_2, \ldots, r_{2n} such that $r_i = r_{n+i}$ for all $1 \le i \le n$, is called a *repetition*. A sequence S is called *non-repetitive* if no subsequence of consecutive terms of S is a repetition.

Planar graphs

A sequence r_1, r_2, \ldots, r_{2n} such that $r_i = r_{n+i}$ for all $1 \le i \le n$, is called a *repetition*. A sequence S is called *non-repetitive* if no subsequence of consecutive terms of S is a repetition.

Example

1, 2, 1, 3, 1, 4, 3, 2, 1, 2 is non-repetitive.

1, 2, 1, 3, 1, 4, 3, 1, 4, 2 is repetitive.

Planar graphs

A sequence r_1, r_2, \ldots, r_{2n} such that $r_i = r_{n+i}$ for all $1 \le i \le n$, is called a *repetition*. A sequence S is called *non-repetitive* if no subsequence of consecutive terms of S is a repetition.

Example

1, 2, 1, 3, 1, 4, 3, 2, 1, 2 is non-repetitive.

1, 2, 1, 3, 1, 4, 3, 1, 4, 2 is repetitive.

Theorem (Thue 1906)

There is an arbitrarily long non-repetitive sequence that is formed using three symbols.

NON-REPETITIVE EDGE-COLOURINGS

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

An edge-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

An edge-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

The *Thue chromatic index* of G, denoted $\pi'(G)$, is the minimum number of colours of a non-repetitive edge-colouring of G.

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

An edge-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

The *Thue chromatic index* of G, denoted $\pi'(G)$, is the minimum number of colours of a non-repetitive edge-colouring of G.

Theorem (Thue, 1906)

$$\pi'(P_n) = 3$$
 for every $n \geq 5$.

Theorem (Currie 2002)

$$\pi'(C_n) = \begin{cases} 4 \text{ for } n \in \{5, 7, 9, 10, 14, 17\} \\ 3 \text{ else.} \end{cases}$$

Theorem (Currie 2002)

$$\pi'(C_n) = \begin{cases} 4 \text{ for } n \in \{5, 7, 9, 10, 14, 17\} \\ 3 \text{ else.} \end{cases}$$

Theorem (Alon, Grytczuk, Haluszczak, Riordan, 2002)

Let G be a simple graph. Then

Theorem (Currie 2002)

$$\pi'(C_n) = \begin{cases} 4 \text{ for } n \in \{5, 7, 9, 10, 14, 17\} \\ 3 \text{ else.} \end{cases}$$

Theorem (Alon, Grytczuk, Haluszczak, Riordan, 2002)

Let G be a simple graph. Then

• $\Delta(G) \le \chi'(G) \le \pi'(G) \le c'\Delta(G)^2$ for some constant c'.

Theorem (Currie 2002)

$$\pi'(C_n) = \begin{cases} 4 \text{ for } n \in \{5, 7, 9, 10, 14, 17\} \\ 3 \text{ else.} \end{cases}$$

Theorem (Alon, Grytczuk, Haluszczak, Riordan, 2002)

Let G be a simple graph. Then

- $\Delta(G) \le \chi'(G) \le \pi'(G) \le c'\Delta(G)^2$ for some constant c'.
- $\pi'(T) \le 4(\Delta(T) 1)$ if T is a tree.

Theorem (Currie 2002)

$$\pi'(C_n) = \begin{cases} 4 \text{ for } n \in \{5, 7, 9, 10, 14, 17\} \\ 3 \text{ else.} \end{cases}$$

Theorem (Alon, Grytczuk, Haluszczak, Riordan, 2002)

Let G be a simple graph. Then

- $\Delta(G) \le \chi'(G) \le \pi'(G) \le c'\Delta(G)^2$ for some constant c'.
- $\pi'(T) \le 4(\Delta(T) 1)$ if T is a tree.
- $\pi'(K_n) \leq 2n$.

Conjecture (Grytczuk, 2008)

There is an absolute constant c such that $\pi'(G) \leq c\Delta(G)$ for any graph G.

Definition

Let G be a plane graph. A *facial trail* is a trail made of consecutive edges of the boundary walk of some face.

Definition

Let G be a plane graph. A *facial trail* is a trail made of consecutive edges of the boundary walk of some face.

A facial non-repetitive edge-colouring of G is an edge-colouring of G such that any facial trail is non-repetitive.

Definition

Let G be a plane graph. A *facial trail* is a trail made of consecutive edges of the boundary walk of some face.

A facial non-repetitive edge-colouring of G is an edge-colouring of G such that any facial trail is non-repetitive.

The facial Thue chromatic index, denoted $\pi'_f(G)$, is the minimum number of colours of a facial non-repetitive edge-colouring of G.

The facial Thue chromatic index of the graph depends on the embedding of the graph.

Theorem

Let G be a 2-edge-connected plane graph and G^* be the dual of G. Then $\pi'_f(G) \leq \chi'(G^*)$.

Theorem

Let G be a 2-edge-connected plane graph and G^* be the dual of G. Then $\pi'_f(G) \leq \chi'(G^*)$.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a plane triangulation. Then $\pi'_f(G) = 3$.

An *internal vertex* of a tree is a vertex that is not a leaf. An *almost even tree* is a tree in which every internal vertex, except at most one, is of even degree.

An *internal vertex* of a tree is a vertex that is not a leaf. An *almost even tree* is a tree in which every internal vertex, except at most one, is of even degree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be an almost even tree. Then $\pi'_f(T) \leq 3$.

An *internal vertex* of a tree is a vertex that is not a leaf. An *almost even tree* is a tree in which every internal vertex, except at most one, is of even degree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be an almost even tree. Then $\pi'_f(T) \leq 3$.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be a tree. Then $\pi'_f(T) \leq 4$. Moreover the bound 4 is tight.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let T be a tree and let K be a subtree of T which is almost even. Then there exists a facial non-repetitive 4-edge-colouring of T that uses only 3 colours on the edges of K.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph. Then $\pi'_f(G) \leq 8$.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph. Then $\pi'_f(G) \leq 8$.

Lemma

Let G be a connected plane graph and let T^* be a spanning tree of its dual G^* . Let T be a subgraph of G with edge set E(T) associated to the edge set of T^* . Then G-E(T) is a tree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph. Then $\pi'_f(G) \leq 8$.

Lemma

Let G be a connected plane graph and let T^* be a spanning tree of its dual G^* . Let T be a subgraph of G with edge set E(T) associated to the edge set of T^* . Then G-E(T) is a tree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a simple 3-connected plane graph. Then $\pi'_f(G) \leq 7$.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph and let its dual contains a Hamilton path. Then $\pi'_f(G) \leq 6$

General upper bounds

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a connected plane graph and let its dual contains a Hamilton path. Then $\pi'_f(G) \leq 6$

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a Halin graph. Then $\pi'_f(G) \leq 6$

Plane hamiltonian graphs

Let G be a plane hamiltonian graph and H a Hamilton cycle in it. Denote by G_1 (resp. G_2) the subgraph induced by H and the edges of G inside (resp. outside) of H. Evidently G_i , i=1,2, is a 2-connected outerplanar graph. Let T_i , be the weak dual of G_i , i=1,2, and $\Delta(T_i)$ its maximum degree.

Plane hamiltonian graphs

Let G be a plane hamiltonian graph and H a Hamilton cycle in it. Denote by G_1 (resp. G_2) the subgraph induced by H and the edges of G inside (resp. outside) of H. Evidently G_i , i=1,2, is a 2-connected outerplanar graph. Let T_i , be the weak dual of G_i , i=1,2, and $\Delta(T_i)$ its maximum degree.

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a hamiltonian plane graph. Then $\pi_f'(G) \leq 7$.

Moreover, if $\max\{\Delta(T_1), \Delta(T_2)\} \le 4$ then $\pi'_f(G) \le 6$,

and if $\max\{\Delta(T_1), \Delta(T_2)\} \le 2$ then $\pi'_f(G) \le 5$.

Outerplanar graphs

Theorem (Havet, Jendroľ, Soták, Škrabuľáková, 2009)

Let G be a 2-connected outerplanar graph. Then $\pi'_f(G) \leq 7$. Moreover, denoting by T the weak dual of G the following holds:

- if G is a cycle and |V(G)|=2 then $\pi_f'(G)=2$;
- if G is a cycle and $|V(G)| \not\in \{2,5,7,9,10,14,17\}$ then $\pi'_f(G)=3$;
- if G is a cycle and $|V(G)| \in \{5,7,9,10,14,17\}$ then $\pi_f'(G) = 4$;
- if $\Delta(T) \leq 2$ then $\pi'_f(G) \leq 5$;
- if $\Delta(T) \leq 4$ then $\pi'_f(G) \leq 6$.

Discussion

Problem

What is the smallest integer k such that $\pi'_f(G) \leq k$ for all connected plane graphs G?

Discussion

Problem

What is the smallest integer k such that $\pi'_f(G) \leq k$ for all connected plane graphs G?

Conjecture (Havet, Jendrol', Soták, Škrabul'áková, 2009)

Let G be a 3-connected plane graph. Then $\pi_f'(G) \leq 6$.

NON-REPETITIVE VERTEX-COLOURINGS

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

A vertex-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

A vertex-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

The *Thue chromatic number* of G, denoted $\pi(G)$, is the minimum number of colours of a non-repetitive vertex-colouring of G.

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

A vertex-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

The *Thue chromatic number* of G, denoted $\pi(G)$, is the minimum number of colours of a non-repetitive vertex-colouring of G.

Theorem (Thue, 1906)

$$\pi(P_n) = 3$$
 for every $n \geq 4$.

Definition (Alon, Grytczuk, Haluszczak, Riordan, 2002)

A vertex-colouring of a graph G is a *non-repetitive* if the sequence of colours on any path in G is non-repetitive.

The *Thue chromatic number* of G, denoted $\pi(G)$, is the minimum number of colours of a non-repetitive vertex-colouring of G.

Theorem (Thue, 1906)

$$\pi(P_n) = 3$$
 for every $n \ge 4$.

Theorem (Currie, 2002)

$$\pi(C_n) = \begin{cases} 4 \text{ for } n \in \{5, 7, 9, 10, 14, 17\} \\ 3 \text{ else.} \end{cases}$$

Theorem (Pezarski, Zmarz, 2009)

Every graph has a subdivision that can be non-repetively coloured using 3 colours.

Theorem (Pezarski, Zmarz, 2009)

Every graph has a subdivision that can be non-repetively coloured using 3 colours.

Let G be a graph and $\Delta(G)$ its maximum degree.

Theorem (Pezarski, Zmarz, 2009)

Every graph has a subdivision that can be non-repetively coloured using 3 colours.

Let G be a graph and $\Delta(G)$ its maximum degree.

Theorem (Grytczuk, 2007)

Let G be a graph. Then $\pi(G) \leq 16\Delta^2(G)$

Theorem (Pezarski, Zmarz, 2009)

Every graph has a subdivision that can be non-repetively coloured using 3 colours.

Let G be a graph and $\Delta(G)$ its maximum degree.

Theorem (Grytczuk, 2007)

Let G be a graph. Then $\pi(G) \leq 16\Delta^2(G)$

Conjecture (Grytczuk, 2007)

There exists an absolute constant k such that any planar graph has a non-repetitive vertex k-colouring.

Theorem (Brešar, Grytczuk, Klavžar, Niwczyk, Peterin, 2007)

Let T be a tree. Then $\pi(T) \leq 4$. Moreover, the bound 4 is tight.

Theorem (Brešar, Grytczuk, Klavžar, Niwczyk, Peterin, 2007)

Let T be a tree. Then $\pi(T) \leq 4$. Moreover, the bound 4 is tight.

Theorem (Barat, Varju, 2007; Kundgen, Pelsmajer, 2008)

Let G be an outerplanar graph. Then $\pi(G) \leq 12$.

Theorem (Brešar, Grytczuk, Klavžar, Niwczyk, Peterin, 2007)

Let T be a tree. Then $\pi(T) \leq 4$. Moreover, the bound 4 is tight.

Theorem (Barat, Varju, 2007; Kundgen, Pelsmajer, 2008)

Let G be an outerplanar graph. Then $\pi(G) \leq 12$.

Theorem (Kundgen, Pelsmajer, 2008)

Let G be a graph of tree-width $t \geq 0$. Then $\pi(G) \leq 4^t$.

Facial Thue chromatic number

Definition

Let G be a plane graph. A *facial path* is a path made of consecutive vertices of the boundary walk of some face.

Facial Thue chromatic number

Definition

Let G be a plane graph. A facial path is a path made of consecutive vertices of the boundary walk of some face.

A facial non-repetitive vertex-colouring of G is a vertex-colouring of G such that any facial path is non-repetitive.

Facial Thue chromatic number

Definition

Let G be a plane graph. A facial path is a path made of consecutive vertices of the boundary walk of some face.

A facial non-repetitive vertex-colouring of G is a vertex-colouring of G such that any facial path is non-repetitive.

The facial Thue chromatic number, denoted $\pi_f(G)$, is the minimum number of colours of a facial non-repetitive vertex-colouring of G.

Facial Thue chromatic number - examples

Conjecture (Harant, Jendrol', 2010)

There exists an absolute constant C such that any plane graph has a facial non-repetitive vertex C-colouring.

Conjecture (Harant, Jendrol', 2010)

There exists an absolute constant C such that any plane graph has a facial non-repetitive vertex C-colouring.

Theorem (Harant, Jendrol', 2010)

Let G be a plane triangulation. Then $3 \le \pi_f(G) = \chi_0(G) \le 4$.

Theorem (Harant, Jendrol', 2010)

$$\pi_f(G) \leq 7.$$

Theorem (Harant, Jendrol', 2010)

$$\pi_f(G) \leq 7.$$

$$\pi_f(G) \leq 7$$
.

$$\pi_f(G) \leq 7.$$

$$\pi_f(G) \leq 7.$$

$$\pi_f(G) \leq 7$$
.

Let G be a plane hamiltonian graph and H a Hamilton cycle in it. Denote by G_1 (resp. G_2) the subgraph induced by H and the edges of G inside (resp. outside) of H. Evidently G_i , i = 1, 2, is a 2-connected outerplanar graph.

Let G be a plane hamiltonian graph and H a Hamilton cycle in it. Denote by G_1 (resp. G_2) the subgraph induced by H and the edges of G inside (resp. outside) of H. Evidently G_i , i=1,2, is a 2-connected outerplanar graph.

Theorem (Harant, Jendrol', 2010)

Let G be a hamiltonian plane graph. Then $\pi_f(G) \leq 16$.

Moreover, if no face of G has its size in $\{5,7,9,10,14,17\}$, then $\pi_f(G) \leq 9$.

Lemma

Let G be a 2-connected outerplanar graph. Then the vertices of G can be coloured with 4 colours in such a way that no interior face contains a repetition.

Lemma

Let G be a 2-connected outerplanar graph. Then the vertices of G can be coloured with 4 colours in such a way that no interior face contains a repetition.

Lemma

Let G be a 2-connected outerplanar graph. Then the vertices of G can be coloured with 4 colours in such a way that no interior face contains a repetition.

Lemma

Let G be a 2-connected outerplanar graph. Then the vertices of G can be coloured with 4 colours in such a way that no interior face contains a repetition.

Let $f_i(v)$ be a colour obtained by a vertex v in a 4-colouring of G_i according the Lemma. Then we colour the vertex v of G with the ordered pair $(f_1(v), f_2(v))$. Clearly this colouring has required properties.

Let G be a 4-connected plane graph. Then $\pi_f(G) \leq 16$.

Moreover, if no face of G has its size in $\{5,7,9,10,14,17\}$, then $\pi_f(G) \leq 9$.

Nonrepetitive vertex-colouring of cubic plane graphs

Theorem (Harant, Jendrol', 2010)

Let G be a 2-connected cubic plane graph. Then $\pi_f(G) \leq 112$.

Nonrepetitive vertex-colouring of cubic plane graphs

Theorem (Harant, Jendrol', 2010)

Let G be a 2-connected cubic plane graph. Then $\pi_f(G) \leq 112$.

Theorem (Harant, Jendrol', 2010)

Let G be a 2-connected bipartite cubic plane graph. Then $\pi_f(G) \leq 31$.

Nonrepetitive vertex-colouring of cubic plane graphs

Theorem (Harant, Jendrol', 2010)

Let G be a 2-connected cubic plane graph. Then $\pi_f(G) \leq 112$.

Theorem (Harant, Jendrol', 2010)

Let G be a 2-connected bipartite cubic plane graph. Then $\pi_f(G) \leq 31$.

Theorem (Harant, Jendrol', 2010)

Let G be a 2-connected cubic plane graph all faces of which are multi-4-gonal. Then $\pi_f(G) \leq 27$.

$$\pi_f(G) \le 256.$$

$$\pi_f(G) \le 256.$$

$$\pi_f(G) \le 256.$$

$$\pi_f(G) \le 256.$$

Thanks for your attention