# Acyclic edge coloring of planar graphs

Dávid Hudák<sup>1</sup> <u>František Kardoš</u><sup>1</sup> Borut Lužar<sup>2</sup> Roman Soták<sup>1</sup> Riste Škrekovski<sup>2</sup>

> <sup>1</sup>Pavol Jozef Šafárik University in Košice, Slovakia <sup>2</sup>University of Ljubljana, Slovenia

> > Nový Smokovec, October 11-13, 2010



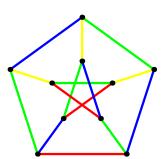


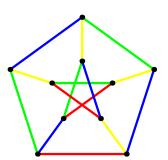


Introduction

Acyclic edge coloring

An acyclic edge coloring of a graph is a proper edge coloring





The smallest number of colors such that a given graph G admits an acyclic edge coloring is the acyclic chromatic index of G,  $\chi'_a(G)$ .

The smallest number of colors such that a given graph G admits an acyclic edge coloring is the acyclic chromatic index of G,  $\chi'_a(G)$ . Clearly,  $\Delta(G) \leq \chi'(G) \leq \chi'_a(G)$ .

The smallest number of colors such that a given graph G admits an acyclic edge coloring is the acyclic chromatic index of G,  $\chi'_a(G)$ . Clearly,  $\Delta(G) \leq \chi'(G) \leq \chi'_a(G)$ .

Conjecture (Fiamčík 1978; Alon, Sudakov, and Zaks 2001)

$$\Delta(G) \leq \chi'_a(G) \leq \Delta(G) + 2$$
 for all graphs  $G$ .

The smallest number of colors such that a given graph G admits an acyclic edge coloring is the acyclic chromatic index of G,  $\chi'_a(G)$ . Clearly,  $\Delta(G) \leq \chi'(G) \leq \chi'_a(G)$ .

Conjecture (Fiamčík 1978; Alon, Sudakov, and Zaks 2001)

$$\Delta(G) \leq \chi'_a(G) \leq \Delta(G) + 2$$
 for all graphs  $G$ .

$$\chi'(G) = \chi'_{a}(G) = \Delta(G) + 1 \text{ for } G = K_{2n-1};$$

The smallest number of colors such that a given graph G admits an acyclic edge coloring is the acyclic chromatic index of G,  $\chi'_a(G)$ . Clearly,  $\Delta(G) \leq \chi'(G) \leq \chi'_a(G)$ .

Conjecture (Fiamčík 1978; Alon, Sudakov, and Zaks 2001)

$$\Delta(G) \le \chi_a'(G) \le \Delta(G) + 2$$
 for all graphs  $G$ .

$$\chi'(G) = \chi'_a(G) = \Delta(G) + 1$$
 for  $G = K_{2n-1}$ ;  
 $\chi'(G) = \Delta(G)$  and  $\chi'_a(G) = \Delta(G) + 2$  for  $G = K_{2n}$ .

Introduction

General upper bounds

Obviously  $\chi_a'(G) \leq 3$  if  $\Delta(G) \leq 2$ .

General upper bounds

Obviously 
$$\chi'_a(G) \leq 3$$
 if  $\Delta(G) \leq 2$ .

Theorem (Burnstein 1979)

$$\chi_a'(G) \leq 5$$
 if  $\Delta(G) = 3$ .

Obviously 
$$\chi'_a(G) \leq 3$$
 if  $\Delta(G) \leq 2$ .

## Theorem (Burnstein 1979)

$$\chi_a'(G) \leq 5$$
 if  $\Delta(G) = 3$ .

## Theorem (Molloy and Reed 1998)

$$\chi'_a(G) \leq 16\Delta(G)$$
 for all graphs G.

Obviously  $\chi'_{a}(G) \leq 3$  if  $\Delta(G) \leq 2$ .

Theorem (Burnstein 1979)

$$\chi_a'(G) \leq 5$$
 if  $\Delta(G) = 3$ .

Theorem (Molloy and Reed 1998)

 $\chi_a'(G) \leq 16\Delta(G)$  for all graphs G.

Theorem (Alon, Sudakov, and Zaks 2001)

 $\chi_a'(G) \leq \Delta(G) + 2$  for all d-regular graphs G with girth at least  $c\Delta(G)\log\Delta(G)$ .

Upper bounds for planar graphs

Theorem (Fiedorowicz, Hałuszczak, and Narayanan 2008)

 $\chi_a'(G) \leq 2\Delta(G) + 29$  for every planar graph G.

$$\chi_a'(G) \leq 2\Delta(G) + 29$$
 for every planar graph G.

Theorem (Cohen, Havet, and Müller 2009)

$$\chi_a'(G) \leq \Delta(G) + 25$$
 for every planar graph G.

$$\chi_a'(G) \leq 2\Delta(G) + 29$$
 for every planar graph G.

## Theorem (Cohen, Havet, and Müller 2009)

$$\chi_a'(G) \leq \Delta(G) + 25$$
 for every planar graph G.

## Theorem (Basavaraju and Chandran 2010)

$$\chi'_a(G) \leq \Delta(G) + 12$$
 for every planar graph G.

$$\chi_a'(G) \leq 2\Delta(G) + 29$$
 for every planar graph G.

## Theorem (Cohen, Havet, and Müller 2009)

$$\chi_a'(G) \leq \Delta(G) + 25$$
 for every planar graph G.

## Theorem (Basavaraju and Chandran 2010)

$$\chi'_a(G) \leq \Delta(G) + 12$$
 for every planar graph G.

### Conjecture (Cohen, Havet, and Müller 2009)

There exists an integer  $\Delta$  for which every planar graph G with maximum degree  $\Delta(G) \geq \Delta$  admits an acyclic edge coloring with  $\Delta(G)$  colors.

Upper bounds for planar graphs with given girth

Theorem (Fiedorowicz, Hałuszczak, and Narayanan 2008)

$$\chi_a'(G) \leq \Delta(G) + 6$$
 if  $g(G) \geq 4$ , G planar.

Upper bounds for planar graphs with given girth

## Theorem (Fiedorowicz, Hałuszczak, and Narayanan 2008)

$$\chi_a'(G) \leq \Delta(G) + 6$$
 if  $g(G) \geq 4$ , G planar.

## Theorem (Borowiecki and Fiedorowicz 2010)

$$\chi'_{a}(G) \leq \Delta(G) + 2$$
 if  $g(G) \geq 5$ , G planar.

$$\chi_a'(G) \leq \Delta(G) + 6$$
 if  $g(G) \geq 4$ , G planar.

## Theorem (Borowiecki and Fiedorowicz 2010)

$$\chi_a'(G) \leq \Delta(G) + 2$$
 if  $g(G) \geq 5$ ,  $G$  planar.

### Theorem (Borowiecki and Fiedorowicz 2010)

$$\chi'_a(G) \leq \Delta(G) + 1$$
 if  $g(G) \geq 6$ , G planar.

$$\chi'_a(G) \leq \Delta(G) + 6$$
 if  $g(G) \geq 4$ , G planar.

#### Theorem (Borowiecki and Fiedorowicz 2010)

$$\chi_a'(G) \leq \Delta(G) + 2$$
 if  $g(G) \geq 5$ ,  $G$  planar.

#### Theorem (Borowiecki and Fiedorowicz 2010)

$$\chi'_{a}(G) \leq \Delta(G) + 1$$
 if  $g(G) \geq 6$ , G planar.

#### Theorem (Hou, Wu, Liu, and Liu 2009)

$$\chi'_{a}(G) = \Delta(G)$$
 if  $g(G) \geq 16$ , G planar.

Upper bounds for planar graphs with given girth

#### Theorem (Yu, Hou, Liu, Liu, and Xu 2009)

Let G be a planar graph with girth g and maximum degree  $\Delta$ . Then  $\chi'_a(G) = \Delta$  if at least one of the conditions below holds:

- $\bullet$   $\Delta \geq 4$  and  $g \geq 12$ , or
- ②  $\Delta \geq 5$  and  $g \geq 10$ , or
- $\bullet$   $\Delta \geq 6$  and  $g \geq 8$ , or
- $\bullet$   $\Delta \geq 12$  and  $g \geq 7$ .

Upper bounds for planar graphs with given girth

|      |    | $\Delta(G)$   |   |   |   |  |    |    |    |  |
|------|----|---------------|---|---|---|--|----|----|----|--|
|      |    | 3             | 4 | 5 | 6 |  | 10 | 11 | 12 |  |
| g(G) | 3  | $\Delta + 12$ |   |   |   |  |    |    |    |  |
|      | 4  | $\Delta + 6$  |   |   |   |  |    |    |    |  |
|      | 5  | $\Delta + 2$  |   |   |   |  |    |    |    |  |
|      | 6  | $\Delta + 1$  |   |   |   |  |    |    |    |  |
|      | 7  |               |   |   |   |  |    |    | Δ  |  |
|      | 8  |               |   |   | Δ |  |    |    |    |  |
|      | 10 |               |   | Δ |   |  |    |    |    |  |
|      | 12 |               | Δ |   |   |  |    |    |    |  |
|      | 16 | Δ             |   |   |   |  |    |    |    |  |

## Theorem (Hudák, K., Lužar, Soták, and Škrekovski)

Let G be a planar graph with girth g and maximum degree  $\Delta$ . Then  $\chi'_a(G) = \Delta$  if one of the following conditions holds:

- $\bullet$   $\Delta \geq 3$  and  $g \geq 12$ , or
- ②  $\Delta \geq 4$  and  $g \geq 8$ , or
- $\bullet$   $\Delta \geq 5$  and  $g \geq 7$ , or
- $\bullet$   $\Delta \geq 6$  and  $g \geq 6$ , or
- $\bullet$   $\Delta \geq 10$  and  $g \geq 5$ .

|                       |    | $\Delta(G)$   |   |   |   |  |    |    |    |  |
|-----------------------|----|---------------|---|---|---|--|----|----|----|--|
|                       |    | 3             | 4 | 5 | 6 |  | 10 | 11 | 12 |  |
|                       | 3  | $\Delta + 12$ |   |   |   |  |    |    |    |  |
|                       | 4  | $\Delta + 6$  |   |   |   |  |    |    |    |  |
|                       | 5  | $\Delta + 2$  |   |   |   |  |    |    |    |  |
|                       | 6  | $\Delta + 1$  |   |   |   |  |    |    |    |  |
| <i>g</i> ( <i>G</i> ) | 7  |               |   |   |   |  |    |    | Δ  |  |
|                       | 8  |               |   |   | Δ |  |    |    |    |  |
|                       | 10 |               |   | Δ |   |  |    |    |    |  |
|                       | 12 |               | Δ |   |   |  |    |    |    |  |
|                       | 16 | Δ             |   |   |   |  |    |    |    |  |

|      |    | $\Delta(G)$   |   |   |   |  |    |    |    |  |
|------|----|---------------|---|---|---|--|----|----|----|--|
|      |    | 3             | 4 | 5 | 6 |  | 10 | 11 | 12 |  |
| g(G) | 3  | $\Delta + 12$ |   |   |   |  |    |    |    |  |
|      | 4  | $\Delta + 6$  |   |   |   |  |    |    |    |  |
|      | 5  | $\Delta + 2$  |   |   |   |  | Δ  |    |    |  |
|      | 6  | $\Delta + 1$  |   |   | Δ |  |    |    |    |  |
|      | 7  |               |   | Δ |   |  |    |    | Δ  |  |
|      | 8  |               | Δ |   | Δ |  |    |    |    |  |
|      | 10 |               |   | Δ |   |  |    |    |    |  |
|      | 12 | Δ             | Δ |   |   |  |    |    |    |  |
|      | 16 | Δ             |   |   |   |  |    |    |    |  |

Results

Proofs use discharging method:

#### Proofs use discharging method:

Inspect the configurations that are reducible.

#### Proofs use discharging method:

- Inspect the configurations that are reducible.
- Consider a minimal counterexample G. Assign the charge to vertices, edges, and faces of G in such a way that its overall sum is negative.

#### Proofs use discharging method:

- Inspect the configurations that are reducible.
- Consider a minimal counterexample G. Assign the charge to vertices, edges, and faces of G in such a way that its overall sum is negative.
- Move the charge inside the graph G without changing its sum in such a way that the charge of all elements of G becomes non-negative, unless there is a reducible configuration.

Reducible configurations - an example

Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3.

Reducible configurations - an example

Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3. *Proof.* 

Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3. *Proof.* 

Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3.

#### Proof.



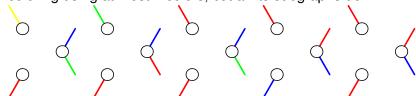
Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3.

#### Proof.



Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3.

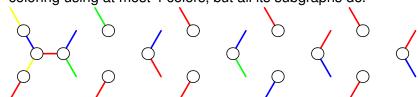
Proof.



Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3.

# Proof.

Since *G* is a minimal counterexample, it has no acyclic edge coloring using at most 4 colors, but all its subgraphs do.



Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3. *Proof.* 

Since *G* is a minimal counterexample, it has no acyclic edge coloring using at most 4 colors, but all its subgraphs do.

Let  $g(G) \ge 8$  and  $\Delta(G) = 4$ . Then G does not contain a 3-vertex with neighbors of degrees 2, 2, and 3. *Proof.* 

Since *G* is a minimal counterexample, it has no acyclic edge coloring using at most 4 colors, but all its subgraphs do.

Reducible configurations

We say that vertices u and v are subadjacent, if there is a 2-vertex adjacent to both u and v.

Reducible configurations

We say that vertices u and v are subadjacent, if there is a 2-vertex adjacent to both u and v.

Let *G* be a minimal counterexample.

We say that vertices u and v are subadjacent, if there is a 2-vertex adjacent to both u and v.

Let *G* be a minimal counterexample.

### Claim

Let v be a  $\Delta$ -vertex subadjacent to a vertex u in G. Then the number of 2-vertices adjacent of v is at most d(u).

We say that vertices u and v are subadjacent, if there is a 2-vertex adjacent to both u and v.

Let *G* be a minimal counterexample.

## Claim

Let v be a  $\Delta$ -vertex subadjacent to a vertex u in G. Then the number of 2-vertices adjacent of v is at most d(u).

## Claim

Let u and v be a pair of subadjacent vertices. If  $d(v) < \Delta$ , then the number of 2-vertices adjacent to v is at most  $d(v) + d(u) - \Delta - 1$ .

#### Lemma

Let  $\Delta \geq$  5. Every planar graph with girth at least 7 and maximum degree at most  $\Delta$  admits an acyclic edge coloring with  $\Delta$  colors.

#### Lemma

Let  $\Delta \geq$  5. Every planar graph with girth at least 7 and maximum degree at most  $\Delta$  admits an acyclic edge coloring with  $\Delta$  colors.

If  $\Delta \geq$  6, then the statement follows from another Lemma for  $g \geq$  6 and  $\Delta \geq$  6. Therefore, we may assume that  $\Delta =$  5 and  $\Delta(G) \leq$  5.

#### Lemma

Let  $\Delta \geq 5$ . Every planar graph with girth at least 7 and maximum degree at most  $\Delta$  admits an acyclic edge coloring with  $\Delta$  colors.

If  $\Delta \geq$  6, then the statement follows from another Lemma for  $g \geq$  6 and  $\Delta \geq$  6. Therefore, we may assume that  $\Delta =$  5 and  $\Delta(G) \leq$  5. Suppose G is a minimal counterexample to Lemma.

# Let the initial charge be set as follows:

- w(v) = 5d(v) 14 for each vertex v of G;
- w(f) = 2d(f) 14 for each face f of G.

Let the initial charge be set as follows:

- w(v) = 5d(v) 14 for each vertex v of G;
- w(f) = 2d(f) 14 for each face f of G.

By Euler's formula we have that the sum of charges of vertices and faces is -28.

Let the initial charge be set as follows:

- w(v) = 5d(v) 14 for each vertex v of G;
- w(f) = 2d(f) 14 for each face f of G.

By Euler's formula we have that the sum of charges of vertices and faces is -28.

It is clear that since  $g \geq 7$  all the faces have nonnegative charge. Vertices of degree 5 have charge 11, vertices of degree 4 have charge 6, vertices of degree 3 have charge 1, and vertices of degree 2 have charge -4.

Let v be a 2-vertex with neighbors  $v_1$  and  $v_2$  such that  $d(v_1) \le d(v_2)$ .

- (i) If  $d(v_1) = 2$ , then v sends 0 of charge to  $v_1$  and -4 of charge to  $v_2$ .
- (ii) If  $d(v_1) = 3$ , then v sends  $-\frac{1}{3}$  of charge to  $v_1$  and  $-\frac{11}{3}$  of charge to  $v_2$ .
- (iii) If  $d(v_1) \ge 4$ , then v sends -2 of charge both to  $v_1$  and  $v_2$ .

Let v be a 2-vertex with neighbors  $v_1$  and  $v_2$  such that  $d(v_1) \le d(v_2)$ .

- (i) If  $d(v_1) = 2$ , then v sends 0 of charge to  $v_1$  and -4 of charge to  $v_2$ .
- (ii) If  $d(v_1) = 3$ , then v sends  $-\frac{1}{3}$  of charge to  $v_1$  and  $-\frac{11}{3}$  of charge to  $v_2$ .
- (iii) If  $d(v_1) \ge 4$ , then v sends -2 of charge both to  $v_1$  and  $v_2$ . Since  $\Delta = 5$ , for each 2-vertex with neighbors with degrees  $d_1$  and  $d_2$  we have  $d_1 + d_2 \ge \Delta + 2 = 7$ .

Let v be a 2-vertex with neighbors  $v_1$  and  $v_2$  such that  $d(v_1) \le d(v_2)$ .

- (i) If  $d(v_1) = 2$ , then v sends 0 of charge to  $v_1$  and -4 of charge to  $v_2$ .
- (ii) If  $d(v_1) = 3$ , then v sends  $-\frac{1}{3}$  of charge to  $v_1$  and  $-\frac{11}{3}$  of charge to  $v_2$ .
- (iii) If  $d(v_1) \ge 4$ , then v sends -2 of charge both to  $v_1$  and  $v_2$ .

Since  $\Delta = 5$ , for each 2-vertex with neighbors with degrees  $d_1$  and  $d_2$  we have  $d_1 + d_2 \ge \Delta + 2 = 7$ .

It is easy to see that 2-vertices send all their negative charge to their neighbors of degree at least 3.

Let v be a 3-vertex in G. Its initial charge is 1. By (ii) it receives  $-\frac{1}{3}$  of charge from each its 2-neighbor, hence its charge is at least  $1-3\cdot\frac{1}{3}=0$ .

Let v be a 4-vertex in G. Its initial charge is 6. If it has no 2-neighbors, its charge does not change.

Let v be a 4-vertex in G. Its initial charge is 6. If it has no 2-neighbors, its charge does not change. It cannot be subadjacent to a 2-vertex. If it is subadjacent to a 3-vertex, then the number of 2-neighbors of v is at most  $3+4-\Delta-1=1$ , hence, it has only one 2-neighbor from which it receives  $-\frac{11}{3}$  of charge by (ii). Its charge is clearly nonnegative.

Let v be a 4-vertex in G. Its initial charge is 6. If it has no 2-neighbors, its charge does not change.

It cannot be subadjacent to a 2-vertex. If it is subadjacent to a 3-vertex, then the number of 2-neighbors of v is at most  $3+4-\Delta-1=1$ , hence, it has only one 2-neighbor from which it receives  $-\frac{11}{3}$  of charge by (ii). Its charge is clearly nonnegative.

If v is not subadjacent to any  $\leq$  3-vertex, then it can have at most three 2-neighbors, from which it receives -2 of charge by (iii). Its charge is (at least)  $6-3\cdot 2=0$ .

Let v be a 5-vertex in G. Its initial charge is 11. If it has no 2-neighbors, its charge does not change.

Let v be a 5-vertex in G. Its initial charge is 11. If it has no 2-neighbors, its charge does not change. If v is subadjacent to a 2-vertex, then it has at most two 2-neighbors, which send at most -4 of charge each. The charge of v is at least  $11-2\cdot 4=3>0$ .

Let v be a 5-vertex in G. Its initial charge is 11. If it has no 2-neighbors, its charge does not change.

If v is subadjacent to a 2-vertex, then it has at most two 2-neighbors, which send at most -4 of charge each. The charge of v is at least  $11 - 2 \cdot 4 = 3 > 0$ .

If v is not subadjacent to any 2-vertex and v is subadjacent to a 3-vertex, then it has at most three 2-neighbors, which send at most  $-\frac{11}{3}$  of charge each. The charge of v is at least  $11 - 3 \cdot \frac{11}{3} = 0$ .

Let v be a 5-vertex in G. Its initial charge is 11. If it has no 2-neighbors, its charge does not change.

If v is subadjacent to a 2-vertex, then it has at most two 2-neighbors, which send at most -4 of charge each. The charge of v is at least  $11 - 2 \cdot 4 = 3 > 0$ .

If v is not subadjacent to any 2-vertex and v is subadjacent to a 3-vertex, then it has at most three 2-neighbors, which send at most  $-\frac{11}{3}$  of charge each. The charge of v is at least  $11 - 3 \cdot \frac{11}{3} = 0$ .

If v is not subadjacent to any  $\leq$  3-vertex, then all its 2-neighbors send -2 of charge by (iii); the charge of v is at least  $11-5\cdot 2=1\geq 0$ .

Thank you for your attention!