Generalized fractional and circular total
coloring of graphs

) Roman SOTAK
P. J. Safarik University, KoSice, Slovak Republic

joint work with A. Kemnitz, P. Mihék, J. Oravcova

Novy Smokovec 2010

A

* X x » ‘»( 4 !
g b r Agentira
’; : I ||||| | Ministerstva skolstva, vedy, vyskumu a $portu SR
* oy Kk +« Operany program > pre Strukturalne fondy EU
I VTS a YVl ’ Podporujeme vyskumné aktivity na Slovensku/
Europska uma ~,( . x Projekt je spolufinancovany zo zdrojov EU
uropsky fond regior —

Roman Sotak Generalized fractional and circular total coloring



@ Definitions
@ Graph properties
@ Generalized total coloring
@ Generalized fractional and circular total coloring
@ Examples

e Basic properties
@ inf — min
@ Monotonicity

e Results for K,
® Xep, p,(Kn)
® x7,(Kn)
® X7 pz,(Kn)

Roman Sotak Generalized fractional and circular total coloring



Graph properties

Generalized total coloring

Generalized fractional and circular total coloring
Examples

Definitions

Graph properties
@ additive
@ hereditary

Definition
Completeness of P:

c(P) = sup{k : K11 € P}

Definition

O ={GeZ:Gisedgeless, ie. E(G) =0}

Ok ={G € I : each component of G has at most k + 1 vertices}
Dk ={Ge€Z:6(G) <k foreach HC G}

Ix ={G € I : G contains no Ky o}
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Definition

LetP O O and Q D O be additive and hereditary graph
properties. The (P. Q)-total coloring of a graph G is a coloring
of the vertices and edges of G such that, for any color i, it holds
G[Vi] € P, G[Ej] € Q and incident vertices and edges are
colored differently.

Definition
The (P, Q)-chromatic number xp o(G):

Xp.o(G) = min{k : G has a (P, Q)-total coloring} .
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Definition

Letr,s € N. The (P, Q)-total fractional / circular (r, s)-coloring
of a simple graph G is a coloring of the vertices and edges of G
by arbitrary / consecutive s-element subsets of Z, such that, for
each color i, the vertices colored by sets containing i induce a
subgraph of property P, the edges colored by sets containing i
induce a subgraph of property Q, and incident vertices and
edges are assigned with disjoint sets.

Definition
The fractional / circular (P, Q)-total chromatic number of G:

Xtp.o(G) = inf{g : G has a (P, Q)-total fractional (r, s)-coloring}

X’C”p,Q(G) = im‘{£ : G has a (P, Q)-total circular (r, s)-coloring}
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inf — min
Monotonicity

Basic properties

xp.o(G) — 1 < x¢.p.0(G) < xp,o(G).

<

Xep.o(G) = min{g : Ghas circular (P, Q)-total (r, S)-coloring
with r < |V(G)| + |E(G)|}.

A\
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inf — min
Monotonicity

Basic properties

Lemma

IfH C G then
Xo.p,0(H) < x¢p.0(G),
Xtp.o(H) < xfp o(G)

Lemma
If Py C P> and Q1 C Q> then

X/C,7771,Q1 (G) = X/C/,PLQz(G)’

le/ﬂ’1 ,Q1 (G) = X;’l,Pz,Qz(G)'
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Results for K

Letn> 3. Then x|/ p, 1, (Kn) = Xip, b, (Kn) = Bt

Sketch of proof.

We consider a (D4, D1)-total fractional (r, s)-coloring of K.
This coloring yields (n— 1)r > (n+ (3))s and consequently

n(n+1)
Xty 0 (Kn) > 2(n—1)

Conversely, we will construct (nontrivial) (D1, D1)-total circular
(n(n+1),2(n—1))-coloring. O
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2
\}7. Dk Dy (Kn)
,\Ik( n)

Results for Kp, X} P, z,(Kn)

Generalized edge coloring

Definition

Let Q O O4 be an additive and hereditary graph property. The
(O, k)-edge coloring of a graph G is a k-coloring of the edges
of G such that, for any color i, it holds G[Ej] € Q.

Definition
The Q-chromatic index x5(G):

xo(G) = min{k : G has a (Q, k)-edge coloring} .
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Results for K

xz, (Kn) < [logy1(n)].

(Several initial values for Z)
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Results for K

For each k, I € N, there exists T(k) such that, for each
n> T(k) and for each P with c(P) = k,

n

X/fI,P,I,(Kn) = X/c’,P,I,(Kn) =% 1
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Results for K, x.p,z,(Kn)

Sketch of proof.

Let c(P) = k. We consider a (P, Z;)-total fractional
(r,s)-coloring of K. Then r(k + 1) > ns and consequently

n
7
Xt.p.z,(Kn) = K+1

Conversely, we will construct a (P, Z1)-total circular
(n, k + 1)-coloring. O
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Results for K

Thank you for your attention.
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