Generalized fractional and circular total coloring of graphs

Roman SOTÁK P. J. Šafárik University, Košice, Slovak Republic

joint work with A. Kemnitz, P. Mihók, J. Oravcová

Nový Smokovec 2010

- **Definitions**
 - Graph properties
 - Generalized total coloring
 - Generalized fractional and circular total coloring
 - Examples
- Basic properties
 - \bullet inf \rightarrow min
 - Monotonicity
- Results for K_n
 - $\chi''_{c,\mathcal{D}_1,\mathcal{D}_1}(K_n)$

 - $\chi'_{\mathcal{I}_k}(K_n)$ $\chi''_{f,\mathcal{P},\mathcal{I}_l}(K_n)$

Graph properties

- additive
- hereditary

Definition

Completeness of P:

$$c(\mathcal{P}) = \sup\{k : K_{k+1} \in \mathcal{P}\}\$$

Definition

$$\mathcal{O} = \{G \in \mathcal{I} : G \text{ is edgeless, i.e. } E(G) = \emptyset\}$$

$$\mathcal{O}_k = \{G \in \mathcal{I} : \text{each component of } G \text{ has at most } k+1 \text{ vertices}\}$$

$$\mathcal{D}_k = \{G \in \mathcal{I} : \delta(G) \leq k \text{ for each } H \subseteq G\}$$

$$\mathcal{I}_k = \{G \in \mathcal{I} : G \text{ contains no } K_{k+2} \}$$

Definition

Let $\mathcal{P} \supseteq \mathcal{O}$ and $\mathcal{Q} \supseteq \mathcal{O}_1$ be additive and hereditary graph properties. The $(\mathcal{P},\mathcal{Q})$ -total coloring of a graph G is a coloring of the vertices and edges of G such that, for any color i, it holds $G[V_i] \in \mathcal{P}$, $G[E_i] \in \mathcal{Q}$ and incident vertices and edges are colored differently.

Definition

The $(\mathcal{P}, \mathcal{Q})$ -chromatic number $\chi''_{\mathcal{P}, \mathcal{Q}}(G)$:

$$\chi''_{\mathcal{P},\mathcal{Q}}(G) = \min\{k : G \text{ has a } (\mathcal{P},\mathcal{Q})\text{-total coloring}\}.$$

Definition

Let $r, s \in \mathbb{N}$. The $(\mathcal{P}, \mathcal{Q})$ -total fractional / circular (r, s)-coloring of a simple graph G is a coloring of the vertices and edges of G by arbitrary / consecutive s-element subsets of \mathbb{Z}_r such that, for each color i, the vertices colored by sets containing i induce a subgraph of property \mathcal{P} , the edges colored by sets containing i induce a subgraph of property \mathcal{Q} , and incident vertices and edges are assigned with disjoint sets.

Definition

The fractional / circular (P, Q)-total chromatic number of G:

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(G) = \inf\{\frac{r}{s} : G \text{ has a } (\mathcal{P},\mathcal{Q})\text{-total fractional } (r,s)\text{-coloring}\}$$

$$\chi''_{c,\mathcal{P},\mathcal{Q}}(G) = \inf\{\frac{r}{s} : G \text{ has a } (\mathcal{P},\mathcal{Q})\text{-total circular } (r,s)\text{-coloring}\}$$

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(\textit{G}) \leq \chi''_{\textit{c},\mathcal{P},\mathcal{Q}}(\textit{G}) \leq \chi''_{\mathcal{P},\mathcal{Q}}(\textit{G}).$$

$$\chi''_{f,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{10}{3}$$

$$\chi_{f,\mathcal{P},\mathcal{Q}}''(\textit{G}) \leq \chi_{c,\mathcal{P},\mathcal{Q}}''(\textit{G}) \leq \chi_{\mathcal{P},\mathcal{Q}}''(\textit{G}).$$

$$\chi''_{f,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{10}{3}$$

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(\textit{G}) \leq \chi''_{c,\mathcal{P},\mathcal{Q}}(\textit{G}) \leq \chi''_{\mathcal{P},\mathcal{Q}}(\textit{G}).$$

$$\chi''_{f,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{10}{3}$$

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(G) \leq \chi''_{c,\mathcal{P},\mathcal{Q}}(G) \leq \chi''_{\mathcal{P},\mathcal{Q}}(G).$$

$$\chi''_{f,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{10}{3}$$

$$\chi''_{c,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{7}{2}$$

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(G) \leq \chi''_{c,\mathcal{P},\mathcal{Q}}(G) \leq \chi''_{\mathcal{P},\mathcal{Q}}(G).$$

$$\chi''_{f,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{10}{3}$$

$$\chi''_{\mathcal{C},\mathcal{O}_1,\mathcal{I}_1}(G)=rac{7}{2}$$

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(G) \leq \chi''_{c,\mathcal{P},\mathcal{Q}}(G) \leq \chi''_{\mathcal{P},\mathcal{Q}}(G).$$

$$\chi''_{f,\mathcal{O}_1,\mathcal{I}_1}(G) = \frac{10}{3}$$

$$\chi''_{\mathcal{C},\mathcal{O}_1,\mathcal{I}_1}(G)=rac{7}{2}$$

$$\chi_{\mathcal{P},\mathcal{Q}}''(\textit{G}) - 1 < \chi_{\textit{c},\mathcal{P},\mathcal{Q}}''(\textit{G}) \leq \chi_{\mathcal{P},\mathcal{Q}}''(\textit{G}).$$

Theorem

$$\chi''_{c,\mathcal{P},\mathcal{Q}}(G) = \min\{\frac{r}{s} : G \text{ has circular } (\mathcal{P},\mathcal{Q})\text{-total } (r,s)\text{-coloring } \text{ with } r \leq |V(G)| + |E(G)|\}.$$

Lemma

If $H \subseteq G$ then

$$\chi''_{c,\mathcal{P},\mathcal{Q}}(H) \leq \chi''_{c,\mathcal{P},\mathcal{Q}}(G),$$

$$\chi''_{f,\mathcal{P},\mathcal{Q}}(H) \leq \chi''_{f,\mathcal{P},\mathcal{Q}}(G).$$

Lemma

If $\mathcal{P}_1 \subseteq \mathcal{P}_2$ and $\mathcal{Q}_1 \subseteq \mathcal{Q}_2$ then

$$\chi''_{c,\mathcal{P}_1,\mathcal{Q}_1}(G) \geq \chi''_{c,\mathcal{P}_2,\mathcal{Q}_2}(G),$$

$$\chi''_{f,\mathcal{P}_1,\mathcal{Q}_1}(G) \geq \chi''_{f,\mathcal{P}_2,\mathcal{Q}_2}(G).$$

Let
$$n \ge 3$$
. Then $\chi''_{f,\mathcal{D}_1,\mathcal{D}_1}(K_n) = \chi''_{c,\mathcal{D}_1,\mathcal{D}_1}(K_n) = \frac{n(n+1)}{2(n-1)}$.

Sketch of proof.

We consider a $(\mathcal{D}_1, \mathcal{D}_1)$ -total fractional (r, s)-coloring of K_n . This coloring yields $(n-1)r \geq (n+\binom{n}{2})s$ and consequently

$$\chi''_{f,\mathcal{D}_1,\mathcal{D}_1}(K_n) \geq \frac{n(n+1)}{2(n-1)}.$$

Conversely, we will construct (nontrivial) $(\mathcal{D}_1, \mathcal{D}_1)$ -total circular (n(n+1), 2(n-1))-coloring.

Generalized edge coloring

Definition

Let $Q \supseteq \mathcal{O}_1$ be an additive and hereditary graph property. The (\mathcal{Q}, k) -edge coloring of a graph G is a k-coloring of the edges of G such that, for any color i, it holds $G[E_i] \in \mathcal{Q}$.

Definition

The Q-chromatic index $\chi'_{\mathcal{O}}(G)$:

$$\chi'_{\mathcal{Q}}(G) = \min\{k : G \text{ has a } (\mathcal{Q}, k)\text{-edge coloring}\}.$$

$$\chi'_{\mathcal{I}_k}(K_{(k+1)n}) \le \chi'_{\mathcal{I}_k}(K_n) + 1.$$
$$\chi'_{\mathcal{I}_k}(K_n) \le \lceil \log_{k+1}(n) \rceil.$$

(Several initial values for \mathcal{I}_1)

$$\chi'_{\mathcal{I}_{1}}(K_{5}) = 2$$
 $\chi'_{\mathcal{I}_{1}}(K_{6}) = 3$
 $\chi'_{\mathcal{I}_{1}}(K_{12}) = 3$
 $\chi'_{\mathcal{I}_{1}}(K_{17}) = 4$
 $\chi'_{\mathcal{I}_{1}}(K_{24}) = 4$

For each $k, l \in \mathbb{N}$, there exists T(k) such that, for each $n \geq T(k)$ and for each \mathcal{P} with $c(\mathcal{P}) = k$,

$$\chi_{f,\mathcal{P},\mathcal{I}_I}''(K_n) = \chi_{c,\mathcal{P},\mathcal{I}_I}'(K_n) = \frac{n}{k+1}.$$

Sketch of proof.

Let $c(\mathcal{P}) = k$. We consider a $(\mathcal{P}, \mathcal{I}_l)$ -total fractional (r, s)-coloring of K_n . Then $r(k + 1) \ge ns$ and consequently

$$\chi''_{f,\mathcal{P},\mathcal{I}_I}(K_n) \geq \frac{n}{k+1}.$$

Conversely, we will construct a $(\mathcal{P}, \mathcal{I}_1)$ -total circular (n, k+1)-coloring.

Thank you for your attention.